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Abstract

Matrix factorization models have been extensively studied as a valuable test-bed
for understanding the implicit biases of overparameterized models. Although both
low nuclear norm and low rank regularization have been studied for these models,
a unified understanding of when, how, and why they achieve different implicit
regularization effects remains elusive. In this work, we systematically investigate
the implicit regularization of matrix factorization for solving matrix completion
problems. We empirically discover that the connectivity of observed data plays
a crucial role in the implicit bias, with a transition from low nuclear norm to low
rank as data shifts from disconnected to connected with increased observations. We
identify a hierarchy of intrinsic invariant manifolds in the loss landscape that guide
the training trajectory to evolve from low-rank to higher-rank solutions. Based on
this finding, we theoretically characterize the training trajectory as following the
hierarchical invariant manifold traversal process, generalizing the characterization
of [L1 et al.| (2020) to include the disconnected case. Furthermore, we establish
conditions that guarantee minimum nuclear norm, closely aligning with our experi-
mental findings, and we provide a dynamics characterization condition for ensuring
minimum rank. Our work reveals the intricate interplay between data connectivity,
training dynamics, and implicit regularization in matrix factorization models.

1 Introduction

Overparameterized models have the capacity to easily fit data with random labels (Zhang et al.|, 2017,
2021). However, in real-world applications, models with more parameters than training samples
still generalize well. This has led researchers to hypothesize that overparameterized models undergo
implicit regularization, favoring certain functions as outputs. Overparameterized matrix factorization
models, fo = AB with & = (A, B), A, B € R?*?, have served as a simplified test-bed for
studying this implicit regularization. In the context of matrix completion problems like the Netflix
challenge, these models aim to find a low-rank completion of a partially observed matrix M € R¥*4,
Prior works have offered seemingly conflicting perspectives on the implicit regularization at play,
with some claiming it promotes low nuclear norm (Gunasekar et al.,2017) and others arguing for low
rank (Arora et al.,[2019; [Li et al.| 2020; Razin and Cohen} 2020). However, a unified understanding
of when, how, and why they achieve different implicit regularization effects remains elusive.

Unlike previous works that focus on either low rank or low nuclear norm regularization,, we sys-
tematically investigate the training dynamics and implicit regularization of matrix factorization for
matrix completion. Through extensive experiments, we found that a certain connectivity property of
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Figure 1: The connectivity of observed data affects the implicit regularization. The ground truth
matrix M* € R**% has rank ranging from 1 to 3. The sample size n covers settings where 7 is equal
to, smaller than, and larger than the 2rd — r? threshold required for exact reconstruction. Darker
scatter points indicate a greater number of samples, while lighter points indicate fewer samples. The
positions of observed entries are randomly chosen, and the experiment is repeated 10 times for each
sample size. (Please refer to Appendix E]for additional experiments and detailed methodology.)

observed data (see Def. 2| for the definition of connectivity) plays a key role in the implicit regular-
ization effects. As shown in Fig.[I] we sample observations randomly from a ground truth matrix
M* € R4 with rank(M*) < d and train models fop = AB, A, B € R?*? from small random
initialization without any rank constraints. For each observation set, we calculate the solutions with
the minimum nuclear norm and minimum rank, which serve as the ground truth benchmarks. These
are then compared with the completion matrix obtained by the model. From Fig.[T} we observe that:

(i) Low rank bias in connected case: When the observed entries are connected, the model consis-
tently learns the lowest-rank solution.

(i1)) Low nuclear norm bias in certain disconnected case: When the observed entries are dis-
connected, the model generally does not find the minimum nuclear norm or lowest-rank solution.
However, in the special case where each connected component is a complete bipartite subgraph, the
model consistently finds the minimum nuclear norm solution.

To understand how data connectivity modulates the implicit bias, we analyze the loss landscape and
optimization dynamics. We find a hierarchy of intrinsic invariant manifolds €2, of different ranks
in the loss landscape. These manifolds constrain the optimization trajectory, causing the model to
learn by incrementally ascending through higher ranks. In the disconnected case, additional sub-£2;,
invariant manifolds emerge within the €2y, invariant manifold, preventing the model from reaching
the global lowest-rank solution. However, we prove that the minimum nuclear norm solution is
guaranteed in the disconnected with complete bipartite subgraph case.

The contributions of our work are summarized as follows:

(i) We systematically investigate the influence of data connectivity on the implicit regularization. Our
empirical findings indicate that the connectivity of observed data plays a key role in the implicit bias,
leading to a transition from favoring solutions with a low nuclear norm to those with a low rank as
the data becomes more connected with an increase in observations (refer to Sec. ).

(i) We characterize the training dynamics of matrix factorization theoretically, showing that the
optimization trajectory follows a Hierarchical Invariant Manifold Traversal (HIMT) process. This gen-
eralizes the characterization of |Li et al.| (2020), whose proposed Greedy Low-Rank Learning(GLRL)
algorithm equivalence only corresponding to the connected case (refer to Sec.[5]and Sec.[6.1).

(iii) Regarding the minimum nuclear norm regularization, we establish conditions that provide
guarantees closely aligned with our empirical findings, which complement the results of (Gunasekar
et al.|(2017). For the minimum rank regularization, we present a dynamic characterization condition
that assures the attainment of the minimum rank solution (refer to Sec.[6.2)).

2 Related works

Norm minimization and rank minimization. Extensive research has been conducted on the
implicit regularization of matrix factorization models, focusing on norm minimization and rank mini-



mization. For norm minimization, Gunasekar et al.|(2017) proved that gradient flow with infinitesimal
initialization converges to the minimum nuclear norm solution in the special case of commutative
observations. Ji and Telgarsky| (2019)); \Gunasekar et al.|(2018) studied norm minimization regular-
ization in deep linear networks. For rank minimization, numerous works have shown that matrix
factorization models favor low-rank solutions. |Arora et al.|(2019); |Gidel et al.| (2019)); |Gissin et al.
(2019); Razin and Cohen|(2020); Jiang et al.[(2023); [Belabbas| (2020) investigated how infinitesimal
initialization of gradient flow encourages low rank in specific settings. |Li et al.| (2020) showed
that under certain assumptions, matrix factorization dynamics are equivalent to a greedy low-rank
learning heuristic. [Li et al.| (2018)); |Stoger and Soltanolkotabi (2021); Jin et al.| (2023)) established
low-rank recovery guarantees for matrix sensing problems under the Restricted Isometry Property
(RIP) condition. [Zhang et al.| (2022, |2023) studied a broader class of model rank minimization for
nonlinear models, of which the matrix factorization model is a special case.

Nonlinear dynamics. The initialization scale can significantly influence the implicit regularization
of neural networks. Large initialization typically leads to linear dynamics (Jacot et al.,|2018) and
poor generalization (Chizat et al., [2019), while small initialization induces nonlinear dynamics (Luo
et al.| 2021)). In this work, we focus on the case of infinitesimal initialization, which corresponds to
highly nonlinear dynamics. An important characteristic of nonlinear neural network dynamics is the
phenomenon of condensation (Luo et al.|2021; [Zhou et al., [2022)), where the network’s effective
complexity is small. The low-rank €2, invariant manifolds we propose are essentially a manifestation
of condensation. [Zhang et al.| (2021} 2022); Bai et al.|(2022); Fukumizu et al.| (2019); [Simsek et al.
(2021)) established the embedding principle of the loss landscape of neural networks and empirically
demonstrated that the training process traverses critical points embedded from smaller subnetworks.
Jacot et al.| (2021) conjectured a saddle to saddle dynamics for deep linear networks, which is
conceptually analogous to the dynamics characterization in this work.

3 Preliminaries

Matrix completion problem. This study focuses on the matrix completion problem, which involves
estimating missing entries within a partially observed matrix. Given an incomplete matrix M € R%*4,
the goal is to predict the entirety of M based on its observed elements. The set of observed entries
is represented as S = {(ix, jx), M, j, }1—,, where (ix, j) indicates the row and column indices,
and M, ;, is the corresponding value assumed non-zero in the matrix. The set of observed indices
is defined as S; = {(ix,jr)}}_,. Entries that are not observed, denoted by *, are considered
missing or unknown. The positions of observed elements in the matrix M are defined by a binary
observation matrix P, where P;; = 1 indicates that M;; is observed, and P;; = 0 indicates that
M;; is unobserved.

Matrix factorization model. Matrix factorization is a prevalent approach for addressing the matrix
completion problem. It reconstructs the matrix W € R4*¢ through the product W = A B, where
A € R and B € R"*?. This work studies the overparameterized scenario with r = d, aiming to
understand the implicit regularization effect in the absence of explicit rank restrictions, paralleling
prior research (Gunasekar et al., [2017; |Arora et al., [2019; L1 et al., 2020; Jin et al.} [2023). In this
work, we focus on the asymmetric factorization, which can be represented as a parametric model:

fo=AB, A,BeR¥> (1)
The matrix factorization model parameters are denoted by @ = (A, B), identified with its vectorized
form vec(0) € R24* . The augmented matrix is W, = (AT B] T e RX2d_and row(A) and

aug
col(B) denote the row and column spaces of A and B, respectively.

Loss function. The learning process for the parameters & = (A, B) involves minimizing a loss
function that measures the difference between observed and estimated entries. In this work, we focus
on the mean squared error, and the empirical risk is thus formulated as

1 1
Rs(0) = —|(AB — M)s, |7 == - > (@i, by, — M, )7, 2

k=1

where a; and b. ; represent the i-th row and j-th column of matrix A and B, respectively. The
residual matrix 0M = (AB — M)g, has elements M;; = (AB);; — M;; for (i,j) € S, and

n



dM;; = 0for (i,7) ¢ Sg. The training dynamics follow the gradient flow of Rg(6):

a6
FT —VoRs(6), 6(0) = 6. 3

4 Connectivity affects implicit regularization

In this section, we define connectivity and present experimental results on implicit regularization for
connected and disconnected observational data.

Definition 1 (Associated Observation Graph). Given a incomplete matrix M to be completed and

its observation matrix P, the associated observation graph G pg is the bipartite graph with adjacency
T

0
Definition 2 (Connectivity). Given a incomplete matrix M to be completed, it is considered

connected if its associated observation graph Gy is connected; otherwise, it is disconnected. The
connected components of M are defined as the connected components of G py.

matrix {g }, with isolated vertices removed.

The connectivity of the graph, as defined above, reflects the connectivity of the observed data.
Appendix |A|Sec. provides a detailed discussion on the equivalent definition of connectivity.

In the case of disconnectivity, there is a special case where each connected component has full
observations, characterized by disconnectivity with complete bipartite components.

Definition 3 (Disconnectivity with Complete Bipartite Components). A incomplete matrix M is
considered disconnected with complete bipartite components if its associated observation graph G pg
is disconnected and each connected component forms a complete bipartite subgraph.

We present examples to demonstrate how connectivity influences the characteristics of the learned
solutions. Consider three matrices to be completed, each obtained by adding one more observation to
the previous matrix: M (disconnected), M (disconnected with complete bipartite components),
and M3 (connected). Fig.[AT|of Appendix [Blillustrates the associated graphs Gas.
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Figs.[2(a-b) compare the learned matrices with the ground truth (GT) solutions having the smallest
nuclear norm and rank. For disconnected M (blue bars), the learned solution achieves neither the
smallest nuclear norm nor rank. For disconnected Ms with complete bipartite components (green
bars), the learned matrix has the smallest nuclear norm but not rank. For connected M3 (red bars),
the lowest rank-2 solution is not unique; the model identifies a particular lowest rank-2 solution, but
it does not correspond to the one with the minimum nuclear norm.
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Figure 2: (a) Nuclear norms of the learned solutions for M7, M5, and M3. Dashed lines represent
theoretically computed smallest nuclear norms. (b) Singular values of the learned matrices for M7,
M5, and M3, with the solid line partitioning significantly nonzero singular values (experimental rank)
and the text (GT) showing the ground truth minimum rank. Mean and standard deviation are recorded
over 100 repetitions. (c) All equivalent sampling patterns of the 3 x 3 matrix completion problem
(see Appendix [B] for details). Cyan stars marked the case learning the lowest-rank solution. (d)
Reconstruction error of the solutions for a 10 x 10 matrix reconstruction problem with M * randomly
sampled at rank = 1 and sample size set to the minimum reconstruction setting n = 2rd — r2.



To thoroughly study all possible cases, we examine all sampling patterns of the 3 x 3 matrix completion.
Fig. [2[c) shows that the model consistently learns the lowest-rank solution for connected sampling
patterns but fails to do so for disconnected patterns. Fig.[2(d) further verifies the impact of connectivity
on low-rank matrix recovery by comparing the reconstruction error for 100 randomly sampled rank-1
matrices using two connected sampling patterns (red and blue dots) and one disconnected sampling
pattern (green dots). The model consistently achieves small reconstruction errors under connected
sampling patterns, while the error is significantly larger for the disconnected pattern.

These empirical results demonstrate an implicit preference for low rank induced by connectivity and
a preference for low nuclear norm in a particular kind of disconnection. In the following section, we
will investigate the training dynamics under both connected and disconnected scenarios.

5 Training dynamics in connected and disconnected cases

5.1 Connected case

This section empirically demonstrates the detailed dynamics of connected observed data. Fig. [3(a)
shows the connected target matrix M with a single unknown element denoted by *. The rank of M
is at least three and equals three if and only if x = 1.2.
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Figure 3: (a) The matrix M to be completed, with the x position unknown. (b) The four singular
values of the learned solution at different initialization scale (Gaussian distribution, mean 0, variance
from 10° to 10716). (c) The training loss curves corresponding to different sampling locations. In
each sampling, we randomly cover an element and observe the other 15 elements. (d) Evolution of the
l>-norm of the gradients throughout the training process. The cyan crosses represent the difference
between the matrix corresponding to the saddle point and the optimal approximation at each rank.
(e-h) Evolution of singular values for matrices W, A, B, and W, during training.

Learning lowest-rank solution. We initialize A and B with different scales and record the singular
values of the learned matrix. As depicted in Fig. 3[b), when starting with larger initialization, the
learned solutions are almost always rank-4. Conversely, as the initialization scale decreases, the first
three singular values of the learned solution are consistently maintained in magnitude, but the fourth
singular value keeps decreasing, resulting in the model learning the lowest rank-3 solution.

Traversing progressive optima at each rank. For a small initialization, the loss curves exhibit a
steady, stepwise decline (Fig.|3|c)). The flat periods correspond to small gradient norms, indicating
potential saddle points (Fig.[3(d)). We compare the matrices learned at these saddle points with the
optimal approximation of each rank and plot their difference in Fig.[3(d), which is very small. These
findings suggest that the model starts near O (rank-0) and progressively finds optimal approximations
within rank-1, rank-2, and higher-rank manifolds until reaching a global minimum.



Alignment of the row space of A and the column space of B. Starting with small initialization,
we track the rank (number of significantly non-zero singular values) of W = AB, A, B, and the
augmented matrix Wy, during the training process. We observe that the rank gradually increases,
with singular values growing rapidly one after another (Fig. B{e-h)). Throughout the entire process,
we consistently find that rank(A) = rank(B ") = rank(W,,, ), which implies that the row space of
A and the column space of B remain aligned at all times. This alignment corresponds to a special
structure that we refer to as the “Hierarchical Intrinsic Invariant Manifold” in Sec. [6.I] which plays a
crucial role in the overall dynamics of the system.

The dynamics of increasing ranks step by step aligns with the description of Greedy Low Rank
Learning (GLRL) (Li et al., 2020). However, we will show next that when the observed data are
disconnected, the learning process is not equivalent to GLRL.

5.2 Disconnected case
In this section, we present a typical experiment in the disconnected situation. As depicted in Fig. ffa),

the target matrix M contains four unknown elements denoted by % and is disconnected. The rank of
M is at least one, and there are infinitely many rank-1 solutions.
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Figure 4: (a) The matrix to be completed, with unknown entries marked by . (b-d) Evolution of
singular values for A, B, and W, during training. (e) Training loss for different disconnected
sampling patterns, each covering 4 elements and observing the remaining 5. (f) Learned values
at symmetric positions (0,1) and (1,0) under varying initialization scales (zero mean, varying
variance). Each point represents one of ten random experiments per variance; labels show initialization
variance. Other symmetric positions exhibit similar behavior. (g) Learned output at the saddle point
corresponding to the red dot in (e). (h) Final learned solution of the GLRL algorithm (Li et al.,2020).

Alignment of the row space of A and the column space of B. As shown in Fig. f[b-e), the
learning process in the disconnected case is similar to the previous experiment: the model naturally
evolves from low-rank to high-rank, with each step increasing a singular value and satisfying
rank(A) = rank(B ") = rank(W,,,). Fig. f) illustrates that as the initialization scale decreases,
the model tends to learn symmetric solutions. However, unlike the connected case, the output does
not approach a particular solution as the initialization decreases. For this specific disconnected M,
we will show that every symmetric solution learned is a minimal nuclear norm solution(see Sec. [6.2]
Thm. @). For fewer observations, the experimental phenomena are similar (see Appendix [B]Fig.

Lowest-rank solution is not learned. Despite the adaptive learning behavior, the final learned
solution has rank 2, as evidenced by the two significantly non-zero singular values in Fig. f{b-d).
Examining the dynamics (@), we find that they decouple into two independent systems: one for the 1st
and 3rd rows of A and columns of B, and another for the 2nd row of A and column of B. Fig. f{g)
shows that the model first learns the surrounding elements 1, 3, 3,9 (rank-1 saddle point), then learns



the middle element 5 in the next stage. The decoupling of dynamics is equivalent to the definition
of disconnection (see Appendix [A] Prop. for proof). The loss curves in Fig. de) consistently
indicate that in the disconnected case, the model learns a sub-optimal solution in the rank-1 manifold,
resulting in a rank-2 solution finally.

Not equivalent to GLRL in disconnected case. We compare the GLRL algorithm (Li et al., |2020)
with the matrix factorization model for solving the same matrix completion problem (Fig. ). |Li
et al.| (2020) claim that the matrix factorization dynamics is mathematically equivalent to the GLRL
algorithm under reasonable assumptions. While GLRL learns the same rank-1 saddle point shown
in Fig. f[(2) in the first stage, it then fills unobserved elements with 0, resulting in a unique rank-2
solution (Fig. Ekh)). In contrast, the matrix factorization model learns symmetric solutions with some
degree of freedom depending on the random seed (Fig. f{f)). The key difference is that the first
critical point (Fig. d{g)) reached by the trajectory is a sub-optimal and not a second-order stationary
point of the rank-1 manifold as assumed by |Li et al.|(2020). Therefore, the equivalence assumption
between GLRL and matrix factorization does not hold in the disconnected case.

6 Theoretical analysis of training dynamics and implicit regularization

6.1 Characterization of training dynamics

Matrix factorization models exhibit a distinctive adaptive learning behavior, progressively evolving
from low rank to high rank. Understanding this phenomenon is rooted in grasping the global dynamics
of matrix factorization models, where the role of intrinsic invariant manifolds becomes critical.

Proposition 1 (Hierarchical Intrinsic Invariant Manifold (HIIM)). (see Appendix[A|Prop. for

Proof) Let fg = AB be a matrix factorization model and {1, - - - , oy} be k linearly independent
vectors. Define the manifold 2y, as QU := Q. (a1, -+ , o) = {0 = (A, B) | row(A) = col(B) =
span{a, - - - , o }}. The manifold 2y, possesses the following properties:

(i) Invariance under Gradient Flow: Given data S and the gradient flow dynamics 0 = —VRs(0),
if the initial point 0y € Qy, then 0(t) € Qy for all t > 0.

(ii) Intrinsic Property: Q) is a data-independent invariant manifold, meaning that for any data S,
Q. remains invariant under the gradient flow dynamics.

(iii) Hierarchical Structure: The manifolds 2y, form a hierarchy: €2 g 04 g e ; Qr_1 g Q..

Figs. [3(f-h) and Figs. @[b-d) show that the training process with small initialization consistently
satisfies rank(A) = rank(B") = rank(W,,,), aligning with the £ invariant manifold. Since
a non-zero initialization in practice, the training trajectory is close to the €2 invariant manifold,
approaches a critical point, and transitions to the next level invariant manifold without getting trapped.

In both connected and disconnected scenarios, we observe a step-by-step hierarchical 2, invariant
manifold traversal. In the connected case, at each level model reaches an optimal solution. However,
in the disconnected case, we can prove that each connected component induces a sub-£2j, invariant
manifold, leading to the experimentally observed sub-optimal solution (see Fig. ).

Proposition 2 (Intrinsic Sub-Q;, Invariant Manifold). (see Appendix[A|Prop.[A.2|for Proof) Let
fo = AB be a matrix factorization model, M be an incomplete matrix and Sy, be an invariant
manifold defined in Prop.[I} If M is disconnected with m connected components, then there exist m
sub-Q2y, manifolds wy, such that wy, ; Qy, each possessing the following properties:

(i) Invariance under Gradient Flow: Given data S and the gradient flow dynamics 0 = —VRg (0),
if the initial point 6y € wy, then 0(t) € wy, forallt > 0.

(ii) Intrinsic Property: wy, is a data-value-independent invariant manifold, meaning that for a fixed
sampling pattern in M and any observed values S, wy, remains invariant under the gradient flow.

(iii) Strict Subset Relation: The output set {fg | 0 € wy} is a proper subset of {fo | 0 € Q4 },
namely, {fo | 0 € wi} & {fo | 0 € Qu}.

Fig. [B[(a) illustrates the trajectory of the experiment in Fig.[d In the disconnected case, sub-£2j
invariant manifolds exist and attract the dynamics, leading the model to learn sub-optimal solutions



x Optimal within each rank level 90°

Initialization @, Sub-optimal within each rank level Initial

ritical point

Sub-Q4 Invariant Manifold
Z 2

‘;—n
- , Hierarchical Intrinsic 180°
1 Invariant Manifold Q4
w@:/ Hierarchical Intrinsic
Invariant Manifold Q, 270°

(a) Mlustration of training trajectories in disconnected case  (b) Alignment of row(A) and col(B)

Evolve in Q;

Align to one
direction

Figure 5: (a) llustrated trajectories for the experiment in Fig. E} The blue line represents the trajectory
converging to the lowest-rank solution, and the red line represents the actual trajectory experienced
by the model. (b) The parameter trajectory escaping from a second-order stationary point to reach the
next critical point for the experiment in Fig.[3] The 8 scatter points represent the 4 row vectors of
matrix A and the 4 column vectors of matrix B. For ease of visualization, we randomly project them
onto two dimensions and plot them in polar coordinates.

on the entire €2 invariant manifold. In fact, we can prove that these sub-optimal solutions are
necessarily strict saddle points. This loss landscape result extends Theorem 5.10 from Li et al.|(2020),
which established the findings for the specific case of symmetric matrix factorization models (see
Appendix [A] Sec. [A.3|for a detailed discussion).

Theorem 1 (Loss Landscape). (see Appendix[A| Thm.[A.3|for Proof) Given any data S, the critical
points of Rg(0) are either strict saddle points or global minima.

Gradient descent easily escapes saddle points (Lee et al.| 2016, [2019). Fig. Ekb) shows that when the
model escapes a saddle point, the parameters initially appear chaotic but align in one direction after
some time, consistent with the “condensation” phenomenon in neural networks (Luo et al., 2021}
Zhou et al.,[2022). For matrix factorization models, by meticulously analyzing the Hessian matrix
structure (see Appendix [A.3)), we find that this alignment corresponds to an €2; invariant manifold,
resulting in a rank increase of one at a time. Under reasonable assumptions, we prove that the training
trajectory follows the €2 invariant manifold step by step.

Assumption 1 (Top Eigenvalue). Let M = (A.B. — M)g, be the residual matrix at the critical
0 —0M
—oM" 0
Assumption 2 (Second-order Stationary Point). Letr 2 be an Q. invariant manifold or sub-$2y,
invariant manifold defined in Prop.[I|or[2] Assume 0. is a second-order stationary point within €,
i, VRs(0.) =0and 6"V?Rs(0.)0 > 0 for all 6 € Q.
Theorem 2 (Transition to the Next Rank-level Invariant Manifold). (see Appendix[A|Thm.[A.4|for
proof) Consider the dynamics @ = —NV Rg(8). Let (09, 1) denote the value of 0(t) when 6(0) = 6.

Let Q be an 2y, or sub-S2y, invariant manifold. Let 0. € € be a critical point satisfying Assump.
and|2| Then, for randomly selected 0, with probability 1 with respect to 0y, the limit

point 0. = (A., B.). Assume that the top eigenvalue of the matrix { } is unique.

~ . 1 1
cp(@c,t) = (}ZIL%(P <05 + afg,t + )\—1 log a) 5)

exists and falls into an invariant manifold Q1. Here )\, is the top eigenvalue of —V?Rg(6..).

Remark. Assump.[l|ensures that upon departing from a critical point 0., the trajectory is constrained
10 escape along a single dominant eigendirection. Assump.[2|ensures that this escape route aligns with
an Q invariant manifold, leading the trajectory into the Q.1 invariant manifold. Our Assump. 2]
is more general than the conditions posited by |Li et al.| (2020), as it remains valid across both
connected and disconnected configurations, and is consistent with our empirical findings (Figs. [3]
and[). Furthermore, our framework diverges from Li et al| (2020) by emphasizing the role of



hierarchical intrinsic invariant manifolds in directing the training trajectories, a principle potentially
extendable to a wider spectrum of models.

Thm. 2] provides a characterization of the escape trajectory. It shows that as the point approaches a
second-order stationary point 8, € €, the trajectory generically converges to a well-defined limit
within €2441. Since the origin O is always a second-order stationary point of {2, the theorem implies
that the trajectory escaping from a small initialization will be close to €2;. This iterative process
gives rise to the phenomenon of Hierarchical Invariant Manifold Traversal (HIMT), which involves a
sequential progression through these €25 manifolds.

6.2 Implicit regularization analysis

Rank minimization is a challenging non-convex optimization problem. |L1 et al.| (2018)); |Jin et al.
(2023)) proved that the Restricted Isometry Property (RIP) condition ensures a minimal rank solution.
However, the RIP condition is often too stringent for practical matrix completion. For instance, the
matrix M3 in Eq. (@) does not satisfy the RIP criteria, yet the model still finds the minimum rank
solution. Our empirical findings (Figs. [} 2L B) suggest that a more lenient condition, specifically
the connectivity of the observed data, frequently leads to convergence towards the minimal rank
solution. Proving this result directly, however, would necessitate a comprehensive examination of
the convergence characteristics within each 2, invariant manifold, which is an endeavor we leave
for future work. Despite this, our insights into the system’s dynamics, i.e., hierarchical invariant
manifold traversal, allow us to assert that if a trajectory successfully navigates through the optimal on
each rank-level invariant manifold €2, a solution of minimal rank can be achieved naturally.

Theorem 3 (Minimum Rank). (see Appendix@ Thm. for proof) Consider the dynamics 0 =
—VRs(0), where 0(t) = (A(t), B(t)), and denote W, = A(t)B(t). Assume W; achieves
an optimal within each invariant manifold Q. For a full rank initialization Wy, if the limit
W = lim,_,0 Woo (aWy) exists and is a global optimum with W;; = M,; for all (i,j) € Sg, then

W e argming, rank(W) st W;; = M;;,Y(4, ) € Sa. (6)

For a disconnected matrix M, our theoretical results (Prop. [2)) and experiments (Fig.[4) confirm the
existence of sub-£2;, invariant manifolds. These manifolds attract the training trajectory, leading to
sub-optimal solutions and preventing convergence to the lowest-rank solution.

However, in a specific disconnected case, such as disconnection with complete bipartite components,
as illustrated in Figs. [I] and 2] the minimum nuclear norm may still serve as a characterization.
Gunasekar et al.|(2017) proved a special case: if the observations are commutative, then the symmetric
model will learn the minimum nuclear norm solution. Intriguingly, for the example My in Eq. (@),
even though the observations are not commutative, the model still learns a minimum nuclear norm
solution. In fact, we can prove the following result, which aligns well with practical experiments.

Theorem 4 (Minimum Nuclear Norm Guarantee). (see Appendix[A| Thm.[A.6] for proof) Consider
the dynamics @ = —V Rg(0), where 6(t) = (A(t),B(t)), and let Wy = A(t)B(t). If the
observation graph associated with the incomplete matrix M is disconnected with complete bipartite
components, and if for a full rank initialization W, the limit W = lim, 0 Woo (W) exists and
is a global optimum with ﬁ\/z-j = M, for all (i, j) € Sg, then

W € argming, [|[W||. st Wi = M,;,V(i,j) € Sa. 0)

7 Conclusion and future work

This study presents a comprehensive experimental and theoretical investigation of matrix factorization
models. The primary objective was to develop a cohesive framework for understanding the conditions,
mechanisms, and reasons behind the diverse implicit regularization effects exhibited by matrix
factorization models. A key finding of this research is the pivotal role of the connectivity of observed
data in shaping the implicit regularization behavior. To elucidate this phenomenon, we identified the
significance of hierarchical invariant manifold traversal within the training dynamics.

Our experiments (Figs. [T} 2| B) provide strong evidence that connected observed data leads to
minimum-rank solutions, as the model learns the optimal of the €2, invariant manifold. However,



further investigation is needed to uncover the underlying mechanisms by which connectivity facilitates
optimal attainment across different {2 invariant manifolds. Additionally, the trade-offs between
initialization scale and training efficiency warrant further research, as certain cases may require
extremely small initialization, potentially impacting training speed (see Appendix [B]Sec.[B.4).

Generalizing the insights gained from matrix factorization models to other architectures is also an
important avenue for future work. Our preliminary experiments indicate that the learning phenomenon
from low rank to high rank persists in deep multi-layer matrix factorization and the query-key
factorization model in Transformer attention mechanisms (see Appendix [B] Figs. [BI). These
findings suggest that the hierarchical invariant manifold traversal process uncovered in our study may
have broader implications and merit further exploration.
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A Proofs of Theoretical Results
In this section, we give all proofs for our theoretical results mentioned in the main text.

A.1 Hierarchical Intrinsic Invariant Manifold and Sub Invariant Manifold

Proposition A.1 (Hierarchical Intrinsic Invariant Manifold (HIIM)). Let fo = AB be a matrix
factorization model and {1, - - - , o } be k linearly independent vectors. Define the manifold €,
as Q= Qp(ay, - ,a) = {6 = (A,B) | row(A) = col(B) = span{ay,--- ,a;}}. The
manifold €y, possesses the following properties:

(i) Invariance under Gradient Flow: Given data S and the gradient flow dynamics @ = —V Rg(8),
if the initial point Oy € Qy, then 8(t) € Qy, forall t > 0.

(ii) Intrinsic Property: Q. is a data-independent invariant manifold, meaning that for any data S,
Q. remains invariant under the gradient flow dynamics.

(iii) Hierarchical Structure: The manifolds Q. form a hierarchy: Qo G Q1 G - G Q1 G Q.

Proof. (i) Invariance under Gradient Flow.

By definition, 2 = Qi(a1,---,ar) = {6 = (A,B) | row(A) = col(B) =
span{ay, - - , ay} }. Consider the gradient flow dynamics in (8):
2
di = - (ai . b.7j — Mij)bj7‘7
JEL
, ) ®)
b‘7j = —— (ai . b.7j - Mij)aiT,
" il

where I; = {j|3i : (4,7) € S}, I; = {i|3j : (¢,j) € Sz}, a; and b. ; represent the i-th row and
j-th column of A and B, respectively.

For any (i,j) € S, the evolution of a; is coupled with b. ; for j € I;. The condition row(A) =

col(B) = span{ay, - - - , oy } ensures the existence of k linearly independent vectors a1, -+ , o €
R< such that a;, b. ; € span{a, -, a;} forall 1 <i,j < d.
Consequently, if a; and b. ; are initially in span{ay, as, -, }, they will continue to evolve

within this subspace under the gradient flow dynamics. Additionally, for (¢, ) ¢ S, the gradients
for the corresponding a; and b. ; will be zero, provided their initial values are zero, maintaining this
state throughout the evolution.

(ii) Intrinsic Property.

As demonstrated in part (i), 2, is invariant under gradient flow dynamics for any dataset .S, confirming
its status as a data-independent invariant manifold.

(iii) Hierarchical Structure.

Th invariant manifold €2; encompasses matrices of rank up to k, including those of lower ranks.
Consequently, the manifolds exhibit the following hierarchical nesting:

QSUG -GG

O

Proposition A.2 (Intrinsic Sub-2;, Invariant Manifold). Ler fo = AB be a matrix factorization

model, M be an incomplete matrix and . be an invariant manifold defined in Prop. [l If M is

disconnected with m connected components, then there exist m sub-$2j, manifolds wy, such that
k g Qy, each possessing the following properties:

(i) Invariance under Gradient Flow: Given data S and the gradient flow dynamics 0= —VRgs(0),
if the initial point 0y € wy, then 0(t) € wy, forall t > 0.

(ii) Intrinsic Property: wy, is a data-value-independent invariant manifold, meaning that for a fixed
sampling pattern in M and any observed values S, wy, remains invariant under the gradient flow.
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(iii) Strict Subset Relation: The output set {fg | 0 € wy} is a proper subset of {fo | 0 € Q4 },
namely, {fo | 0 € wi} ; {fo |0 € Q}.

Proof. Existence.

Let us consider an incomplete matrix M whose associated observational graph is divided into m
connected components, denoted by L1, Lo, ..., L,,. For each component L,,, we define SmL P as the
subset of observed indices within L,, where 1 < p < m and S, is the set of all observed indices.

For each L,, we can identify row indices R, and column indices C), corresponding to the observed
entries in L, as follows:

e e L, o e L,
R,={i|35: (4,j) € Sz"}, Cp={j|Fi:(,j) € Sz"}.
Here, R, includes the row indices and C,, includes the column indices of the entries observed in L.

Define AL» and B%» as the submatrices of A and B corresponding to R, and C), respectively, and
let Af ? and B,«L * be the remaining rows not in R,, and C),.

Let Q= Qp(a1, -+ ,ar) = {60 = (A, B) | row(A) = col(B) = span{a, - ,a}} be the
given 2, invariant manifold.

The sub-£2;, invariant manifold associated with the connected component L,, can be defined as

wy” :={(6 = (A, B)) | row(A") = col((B**)) = span{a,- - , o}, Al» = Bl» = 0},
©)

It is easy to check w,l;“” is a proper subset of 2.

(i) Invariance under Gradient Flow.

The condition row(A%r) = col((B*r)) = span{a,--- ,ay} along with A" = B =0
guarantees that a;, b. ; € span{a, ..., ay} for all (¢, ) € S;ﬁ”, and a;,b. ; = O forall (4,5) ¢
Sa”.

In other words, the sub-£2; invariant manifold w,fp is the set of all pairs (A, B) where, for each
observed position (4, ) in the connected component L,, the vectors a; and b. ; lie within the span of

.. . L
{al, BN ak}, and for any position not in SzT, the vectors are zero.

Considering the dynamics expressed in equation (8)), it is evident that the evolution of a; is influenced

by b. ; for (i,7) € SE» . Hence, if a; and b. ; are initially in the span of {1, aa, - -+ , a }, they
will continue to evolve within this span under the gradient flow dynamics. Moreover, for positions

(i,7) ¢ S&?, we consider the following scenarios:

* For (i,7) ¢ Sz, since the matrix entry M,; does not contribute to the loss Rg(8), the
gradients for corresponding a; and b. ; will perpetually be zero. Thus, if their initial values
are zero, they will remain zero throughout the evolution.

* For (i,j) € S, but not in S£ ?, the dynamics corresponding to different connected compo-
nents are decoupled. Therefore, if the initial values for a; and b. ; are zero, they will stay
zero during the evolution.

(ii) Intrinsic Property.

As established in (i), the manifold w,f” is invariant under gradient flow for any data S with a fixed
sampling pattern, qualifying it as a data-value-independent invariant manifold.

(iii) Strict Subset Relation.

The output set {fo | @ € Q4 } encompasses all matrices of rank k, whereas {fg | 6 € w,fp} is
limited to rank-£ matrices with specific row and column indices confined to R, and C),. Consequently,
{fo | @ € wy} forms a strict subset of {fg | @ € R}, as stated by {fo | 0 € wr} S {fo | 0 €

O
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A.2 Connectivity

Definition A.1 (Associated Observation Graph). Given a incomplete matrix M to be completed
and its observation matrix P, the associated observation graph Gy is the bipartite graph with

PT
P 0
Definition A.2 (Connectivity). A matrix M to be completed is considered connected if its associated
observation graph Gy is connected, otherwise, we call it disconnected. The connected components
of M are defined as the connected components of this graph.

adjacency matrix { ] with isolated vertices removed.

Definition A.3 (Disconnectivity with Complete Bipartite Components). A matrix M to be
completed is considered disconnected with complete bipartite components if its associated observation
graph G is disconnected and each connected component forms a complete bipartite subgraph.

Remark. In the bipartite graph representation of the observed data, isolated vertices correspond
to entire rows or columns of the matrix M that are not observed. These rows or columns do not
contribute to the loss calculation and have no influence on the dynamics of the matrix factorization
under infinitesimal initialization. Consequently, when analyzing the connectivity of the observed data
and its impact on the learning dynamics, these isolated vertices can be safely disregarded.

Remark. The disconnectivity of the bipartite graph representing the observed data is equivalent
PT

0

indicating the positions of the observed entries in M.

to the reducibility of the adjacency matrix [12 } where P is the binary observation matrix

In the context of matrix completion problems, such as the Netflix problem, connectivity has a practical
interpretation. Connected components in the bipartite graph indicate groups of users and movies
that are linked by the users’ viewing history. Users within the same connected component are related
through the movies they have watched in common. Due to this practical significance, we prefer to use
the term “connectivity” instead of “reducibility” when discussing the structure of the observed data
in matrix completion problems.

Definition A.4 (Connectivity of Observed Data). Given a matrix M to be completed, an undirected
simple graph G can be induced from it: the nodes of the graph are the observed elements in the
matrix, and two nodes are adjacent if and only if they are in the same row or column of the matrix M.
A matrix M to be completed is considered connected if its induced graph G is connected, otherwise,
we call it disconnected.

Lemma A.1. For any simple graph G, if we remove all isolated vertices from G to obtain a new
graph G', then G’ is connected if and only if the line graph of G', denoted as L(G'), is connected.

Proof. — Assume G’ is connected. Consider any two nodes in L(G"), which correspond to two
edges in G, say e; and e;. Since G’ is connected, there exists a path connecting the endpoints of
e1 and es. This path corresponds to a sequence of edges in G’, which in turn corresponds to a path
connecting the nodes representing e; and ez in L(G"). Therefore, L(G’) is connected.

<= Conversely, assume L(G") is connected. Consider any two vertices v; and vy in G’. Since G’
has no isolated vertices, each of v; and vs is incident to at least one edge. Let these edges be e; and
eq, respectively. Since L(G”) is connected, there exists a path connecting the nodes representing e;
and ey in L(G"). This path corresponds to a sequence of edges in G’, which in turn corresponds to a
path connecting v; and v in G’. Therefore, G’ is connected.

In conclusion, we have proven that for any simple graph G, if we remove all isolated vertices from G
to obtain a new graph G, then G’ is connected if and only if the line graph of G’, denoted as L(G"),
is connected. O

Proposition A.3. Given a incomplete matrix M, the connectivity of M defined in Def.[A.2] and
Def. is equivalent.

Proof. By definition, each edge of a bipartite graph corresponds to an observed data item, and two
edges in a bipartite graph are adjacent if and only if the two corresponding observed data items are
in the same row or column. Therefore, the connectivity of the observed data is equivalent to the
connectivity of the edges of the bipartite graph, which is, in turn, equivalent to the connectivity of the
line graph of the bipartite graph.
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According to Lem. [A.T] for any graph G, if we remove all isolated vertices from G to obtain a new
graph G’, then G’ is connected if and only if the line graph of G’, denoted as L(G’), is connected.

In the context of the bipartite graph representation of the observed data, removing isolated vertices
corresponds to removing rows and columns that contain no observed entries. Thus, the connectivity
of the bipartite graph after removing isolated vertices is equivalent to the connectivity of the observed
data as defined in Def.[A.4]

Consequently, the connectivity of the observed data as defined in Def.[A.2](based on the line graph
of the bipartite graph) is equivalent to the connectivity of the observed data as defined in Def. [A.4]
(based on the connectivity of observed data). O]

Definition A.5 (Decoupling of Dynamics). Given an incomplete matrix M, consider the gradient
Sflow dynamics of matrix factorization models, V1 < i,j < d,

. 2
a; = _ﬁ Z(ai . b‘J — Mu)bT’],

Jjel;
) 9 . (10)
b‘,j = 7% Z(m . b',j — M,J)a7 .
iel;
The dynamics are said to be decoupled if there exist disjoint subsets of indices R1, Ra, ..., Ry C

{1,2,...,d} for the rows of A and C1,Cs,...,Cr C {1,2,...,d} for the columns of B, such that
foreachl € {1,2,...,k}, the dynamics of {a; : i € R;} and {b. ; : j € C,} form an independent
system of equations. In other words, the dynamics can be divided into k(k > 1) independent
subsystems, each involving a subset of rows of A and a subset of columns of B. If such a division is
not possible, the dynamics are said to be coupled.

Proposition A.4. Given an incomplete matrix M, if it is disconnected as defined by Def.[A.2] then
the dynamics are decoupled as defined by Def.[A.3} if it is connected as defined by Def. then the
dynamics are coupled as defined by Def.[A.3]

Proof. Consider a matrix M to be completed, with its associated observation graph comprising

m connected components, denoted as Lq, Ly, -+, L,,. Let S£ P C Sg represent the subset of
observed indices corresponding to the connected component L,,, where 1 < p < m and S, denotes
the complete set of observed indices. If the incomplete matrix M is disconnected, then for each

connected component L,,, the subset S£ ¥ can be partitioned into two subsets R, and Cp,, 1 < p < m,
such that

.19 .. L S .. L
R,={i|35: (4,)) € Sz"}, Cp={j|Fi:(i,j) € Sz"}. (11)
In other words, R,, contains the row indices and (), contains the column indices of the observed

entries in the connected component L.

It can be easily verified that the dynamics are decoupled in this case, as the subsets {R?,,, C), };;
satisfy the conditions in Def. Each connected component L, corresponds to an independent
subsystem involving the rows of A indexed by R, and the columns of B indexed by C,,.

If M is connected, then its associated observation graph consists of a single connected component,
and the entire dynamics are coupled. O

Examples of connectivity and disconnectivity. Consider three matrices to be completed, each ob-
tained by adding one more observation to the previous matrix: M7 (disconnected), M (disconnected
with complete bipartite components), and M3 (connected).

1 2 % 1 2 x 1 2 %
M, =13 * *x| ,My;=|3 4 *| M;=|3 4 x|. (12)
* * 5 * % H 6 « 5

Fig.[AT]illustrates the associated graphs G s.
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et e S

(a) My (b) M> (c) Ms

Figure A1l: The associated observation graphs G of the incomplete matrices My, M5, and
M in Eq. [} M, is disconnected, with its associated observation graph consisting of two connected
components. M is also disconnected, but each connected component of its associated observation
graph forms a complete bipartite subgraph. In contrast, M3 is connected, and its associated observa-
tion graph consists of a single connected component.

A.3 Loss Landscape

In this paper, we focus on the problem of asymmetric matrix factorization. Previous literature (Gu-
nasekar et al. 2017; |Li et al.l 2018, 2020; Jin et al.| 2023) has predominantly concentrated on
symmetric matrix factorization problems. Although asymmetric matrix factorization models can
be transformed into symmetric cases, studying symmetric matrix factorization does not necessarily
cover all aspects of the asymmetric scenarios.

Generally, an asymmetric matrix factorization model W = A B can be transformed into a symmetric
situation by setting

A
U= [BT] e R*4,

We then consider the model W’ = UU T, which corresponds to the following matrix completion
problem:
AAT AB
BTAT B'B|-
We define the loss as
A B 1 1
L' ( [C D]) = 5L(B)+ 5ﬁ(CT).

Li et al.[(2020) established the following results:

Theorem A.1 (Theorem 5.10 in|Li et al.|(2020)). Let f : R*4d s R be a convex C2-smooth Sfunction.
(1). All stationary points of £ : R>*4 — R, L(U) = %f (UUT) are either strict saddles or global
minimizers; (2). For any random initialization, GF (1) converges to strict saddles of L(U) with

probability 0.

The proof of this theorem relies heavily on Theorem [A.2]of Du and Lee| (2018), which requires the
parameter matrix U € R*F to satisfy the condition that & > d. In the case of symmetric matrix
factorization, where U € R%*4, this condition is naturally met. However, for asymmetric matrix

factorization, where U = [ BT} € R24xd_thjs condition is not satisfied, and thus the proof of

Theorem[A_T]is only applicable to the symmetric case of matrix factorization.

Theorem A.2 (Theorem 3.1 in|Du and Lee| (2018))). Let f : R¥*? — R be a C? convex function.
Then L : R™* — R, L(U) = f(UU") ,k > d satisfies that (1). Every local minimizer of L is
also a global minimizer; (2). All saddles are strict. Here saddles denote those stationary points
whose hessian are not positive semi-definite (thus including local maximizers).

Below we give a direct proof of the loss landscape of an asymmetric matrix factorization model.

Theorem A.3 (Loss Landscape). For any data S, the critical points of Rg(0) are either strict
saddle points or global minima.
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Proof. We start by recalling the definition of the loss function:

1
Rs(0) = L(A,B) = S| AB — M|z, = ((AB);; — M;;)>.

DN | =

(2,7)€S8,

Let 8 = (A, B) denote a critical point. We define a new matrix, § M, as the difference between the
product of A and B and the matrix M, with this difference being computed only over the indices in
the set S. More formally, dM = (AB — M)g,_, where the elements of § M are given by:

* For (4,j) € Sy, we have IM;; = (AB);; — M;;.
* For (¢,j) ¢ Sg, we have M;; = 0.

This definition of M ensures that we only consider the differences in the entries that belong to the
set Sy, while all other entries are set to zero.

Consider the function:

1
L(A+e,B+n)= §||5M+5B + An+en|3,

1 1
= 1M}, + (0M.eB+ An)s, + S|eB+ Anly,
+(OM, en)s, + o], ),

where the inner product of two matrices A, B is defined as (A, B) := Tr(ABT).

At the critical point, the first order term (0M,eB + An)gs, equals 0. The Hessian operator,
representing the second order term, is given by:

1
hap(e,n) = ;lleB + Anls, +(0Men)s, .

Our goal is to demonstrate that if 6 M # 0, there always exists €, 7 such that h 4 g(e,n) < 0. To
this end, we consider the ranks of matrices A and B in two cases:

(i) rank(A) < d or rank(B) < d:

Without loss of generality, we assume 0 M;; := dM;; # 0 for some (7, j) € S, and rankA < d.
Under these conditions, there exists a non-zero vector v such that Av = 0.

We set ; = v and 'y = 0 for s # j, where n"; denotes the j-th column of the matrix 7. Let
ef =w' € RYand 5 = 0 for s # i, where € denotes the i-th row of the matrix €.

‘We then have:

* * 1 *
ha (", ") = §H€ B”?SE +O0Mijw'v

IA

1

Sllw " BI§, +6Mw v
1

= §wTBBTw + §Mijw—r'v.

We define g(w,v) = 2w BB w + 6M;jw v and consider:

1
5012(5Mi2j’UTBBT’U - aéij'vTv

1
Eazéij(vTBBTv —2v'v).

g(—adM;;v,v)
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For 0 < a < D Y— where Ap max represents the top eigenvalue of BB T, we find
g(—adM;;v,v) < 0.

Therefore, when w = —adM;;v, we obtain h4 g(e*,n*) < 0. This immediately implies the
critical point @ = (A, B) is a strict saddle point.

(i) rank(A) = rank(B) = d:

Lete = adM B~ and 17 = 0. In this scenario, the first order term (M ,eB + An)s,_ in Eq. (T13)
simplifies to a||[0M ||3_. Ata critical point, this quantity equals zero, it implies that 6 M = 0. This
in turn implies that the critical point @ = (A, B) is a global minimum.

This concludes the proof, establishing that the critical points of Rg(0) are either strict saddle points
or global minima. O

A.4 Escaping from Top Eigendirection

In this section, we focus on the dynamics of escaping from a critical point. According to Prop.
the loss landscape consists solely of strict saddle points and a global minimum. Consequently,
gradient-based methods can readily escape from a critical point that is not a global minimum.

In the following, we will demonstrate that the escaping dynamics near a critical point can be
approximated by a linearized version of these dynamics. For this, consider the following:

6 = —VRs(6). (14)

Assume @.. is a saddle point for which VRg(0.) = 0. We can apply a first-order Taylor expansion to
the right-hand side of Eq. (T4), yielding:

—VRs(0) = —VRs(6.) — V*Rs(6.)(0 — 0.) + O(1|6 — 6.]*), (15)

where V2Rg(6,.) represents the Hessian matrix. Given that VRg(0.) = 0, the gradient flow
dynamics around 6. can be approximated as:

6=H(6-90.), (16)
where H := —V?Rg(0..). Eq. ([6) is a classic linear ordinary differential equation, with the solution:
6(t) = e (6y — 6.) + 6.. (17)

The dynamics near a critical point can be approximated by a linearized version. Hence, in the vicinity
of a critical point, we can analyze the linearized dynamics to understand the escape mechanism. In
the following, we will show that during this escape process, the dynamics follow a pattern referred to
as dominant eigenvalue dynamics.

Eq. elucidates that the dynamics near the critical point 8, are predominantly dictated by the
properties of H, a real symmetric matrix in R2d*x2d° g eigendecomposition is given by:

H :=-V’Rs(6.) = QAQ", (18)

where A is a diagonal matrix and @ is an orthogonal matrix. Let Ay > A > --- > A; € R denote
the eigenvalues of H, and let g;1, @;2, - - - , @1, represent the eigenvectors corresponding to A;.

Given that \; > )y, the ratio e*? /i for i > 1 grows exponentially fast. Consequently, near ..,
the evolution of the system is primarily driven by the eigenvectors qi1, q12, - - - , g1, associated with
the largest eigenvalue ;.

This following proposition formalizes the intuitive idea that in the vicinity of a saddle point, the
dynamics primarily follow the direction associated with the largest eigenvalue. This leading eigendi-
rection becomes increasingly dominant as time evolves, allowing for an escape from the saddle point
and facilitating a specific structured transition.

Let’s consider 8. to be a saddle point. Consider:
6 = —V2Rs(6,)(0 —6.), 6(0)=6y. (19)
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Here, 6y and 6. are in close enough proximity for the linearized dynamics to be valid over a
sufficiently long period. We can then establish the following proposition:

Proposition A.5 (Escape from Saddle Points Following a Dominant Eigenvalue Dynamics).
Consider the linearized dynamics given by 6 = ~V2R5(0.)(0 —0.), we denote H := —V?Rg(6..).
Let A1 € R be the largest eigenvalue of H, with corresponding eigenvectors qi1,q12," - ,q1il,-
Denote c; = (6g — 0., q1,),V1 < j < 1. Assume there exists j such that c¢; # 0, then, given any
€ > 0, there exists a tog > 0 such that for all t > t, the following holds:

W0 ). 20)

L
Mt 3 ¢,
=1

This means that, as time progresses, the direction of the parameter evolution increasingly aligns with
the dominant eigenvectors of H.

This proposition is a consequence of the fact that the solution of the differential equation is given
by 8(t) = ¢H*0(0), and as ¢ tends to infinity, the term corresponding to the dominant eigenvalue in
the matrix exponential ef¥* becomes dominant. Therefore, near the saddle point, we have 8(t) ~

Iy
e>‘1t Z qulj + 0c~
Jj=1

Proof. The solution of the ordinary differential equation (T9) is 8(t) = ' (8, — 0..) + 0... Here,
H = fVQRS(HC) is a real symmetric matrix, which can be diagonalized. Let A\; > Ay > -+ > Aq
be the eigenvalues of H, and let g;1, g;2, - - - , gi1, be the eigenvectors corresponding to ;. We can
then express 6(t) as:

s l;
0t) = > e (6) — 0., qi;)qi; + 0. 1)

i=1 j=1

Next, we analyze the norm of the relative difference between 0(t) and a term dominating its growth:

S lL
>3 N0 — Oc, qij)ai;

o(t) — 6. 1l 2 ==
l1 ll
> eMt By —0.,q15)q1; > eMt(0y — 0., q15)q1,
j=1 j=1
S ll
< Z Z e~ (A1—X)t l (60 — 6., qw>‘1w (22)
. - 1
i=2j=1 > (00— 0c,q15)q1;
i=1
S li
< o122t (6o — 0., Qij>Qij
< 2 . o
=25=111 %" (00 — 0.,q15)q1,
i=1

s i |l (B0 — 0c,qis)qi log €
We define C' = 3 3 ||+ (6o 1 9i5) 93y . By choosing tg = 3 = we ensure that for all
i=2j=1|| & 17— A2
! Z<00 7003q1j>q1j
j=1
t > to, the following condition is met:
0(t) — 06,
- ®) 1| <e (23)
>, MOy — 0., q15)q1;

Jj=1
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O

Prop.[A.5]describes that under the linearized dynamics, the parameters will escape from the saddle
point along a specific direction. However, when considering the original nonlinear dynamics (t) =
—V Rg(0), we encounter a trade-off: we should choose ¢ sufficiently large so that the trajectory can
align well with the dominant eigendirection while escaping the saddle point, but if ¢, is too large,
the linearization approximation will fail as 6(ty) moves away from 8.. [Li et al.| (2020) (Theorem
5.3) proved a general dynamical result through careful analysis and error control: assuming the
eigenvector corresponding to the maximum eigenvalue is unique and the initialization is sufficiently
close to the saddle point, there always exists a suitable ¢y such that the linear dynamics can align with
the dominant eigendirection before the linearization breaks down. We can generalize this result to the
case where the eigenvector corresponding to the largest eigenvalue is not unique:

Proposition A.6. Consider the dynamics given by (t) = —V Rg(8), we use (0o, t) to denote the
value of 0(t) in the case of 0(0) = 6y. At a critical point 0., we denote the negative Hessian as
H := —V?Rg(0.). Let \1 € R be the largest eigenvalue of H, with corresponding eigenvectors

) l

qi1,q12, ", qu,. Denote ¢; = (g — 0c,q15),V1 < j < L, and vi = 37, cjquj. Assume
there exists j such that ¢; # 0. Let z,(t) == ¢ (GC + avy, t+ )\% log é) for every a > 0, then
z(t) = limg_,0 24/(t) exists and is also a solution of the given dynamics, i.e., z(t) = p(2z(0),1).
Furthermore, ¥Vt € R, there exists a constant C > 0 such that

Ap A2

S C’a 2X1—Ag

11
0.+ aby,t + —log — | — 2(t
Hg)( Fafotry Og@) z()Q

for every sufficiently small o, where \1 — Ay > 0 is the eigenvalue gap.

Proof. By Theorem 5.3 in Section 5.1 of|Li et al.| (2020), we know that if the eigenspace corresponding
to A1 is one-dimensional, i.e., [; = 1, then the escaping direction will be the top eigenvector direction,

A1 A2 .. . .
and the convergence rate is O(a2*1=>2 ). Therefore, Proposmonholds in this case.
Now, if the eigenspace corresponding to A; is not one-dimensional, we denote ¢; = (6y —
0:.q1;),V1 < j <lj,and v, = 231:1 ¢jq1; will be the escaping direction. Following the same

Al A2
technique as in|Li et al. (2020), we can easily verify that the convergence rate remains O (a2 1=>2 ).
Therefore, Proposition[A.6holds in this case as well.

O

A.5 Eigenvalues and Eigenvectors of Hessian

Suppose the dominant directions fulfill specific conditions, such as any combination ¢1q11 + c2q12 +
.-+ + ¢, qui, » leading to rank 1 model parameters (A, B). In such scenarios, we may observe a
phenomenon where the rank of the matrix increases incrementally.

Firstly, we analyze the eigenvector structure of the Hessian matrix at the critical point 8, =
(A., B.)to understand why the parameter will enter the rank-1 invariant manifold.

Computation of the Hessian Matrix at a Critical Point. To compute the Hessian matrix, we first
consider the gradient:

Rs(0) = Est (f(x,0), f*(x)),

VoRs(0) =EsV(f(x,0), f*(x)) Vefs(),
d2

= Esdil (fo,f*) Ve (£a); ,

i=1

2
= ZEs(fg — f*)zve (fe)i ’
=1
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where 0;( (fo, f*) is the i-th element of V/ (f(x,0), f*(x)), and (fg), is the i-th element of the
vectorization of fy.

For the Hessian matrix Hg (), we have

d? d?

H(6) := VoVoRs(0) = > EsVo (0il(fo, ) Vo (fo); + >_Esdil (fo, ") VoVa ((fo),)

i=1 i=1

d? d?
= 3" st (fo. £) Vo (fo), (Vo (Fo) ) + S Esdil (fo, £*) VoVo ((fo),),
i,j=1 i=1

d2
= 3" Vo fo): (Vo (fo);) +ZES (Fo = F*)iV6 Vo (fo),).
ij=1
where 0;;¢ (fo, £*) is the (¢, j)-th element of VV (f(x, 0), f*(x)).

We define matrices H™)(6) and H?) (0) as follows:

HY(6 Z Vo (fo); (Vs (fe)j)T,

Jl

H® (g ZES fo— 1")iVaVa ((fo),),

We further denote that H (8) := H™)(0) + H®?)(9).

For matrix factorization model, the eigenvectors of H (?) has a special structure, as characterized by

Lem.[A2]

Lemma A.2 (Data-Independent Interleaved Structure of Eigenvectors of H(®)). Ler 6,
(A, B,) be any critical point of the matrix factorization model. If X is an eigenvalue of H®)(8,. ) €
R2d” X2d2, then there exist at least d eigenvectors associated with \. These d eigenvectors take the

2 . . .
formv®e,vR®ey, -, VRQey € R24° where v € R2? is a vector to be determined and e; is the
unit vector representing the i-th column of the identity matrix I; € R?*4,

Proof. Let’s denote the residual matrix at the critical point as 0M = (A.B. — M)g,, where
(A., B.) is a critical point. For the vectorized parameter 8., by direct calculation the matrix

H® := —V?Rg(0.) can be formulated as a block matrix, with the diagonal blocks being 0. The
specific format is as follows:

7(5MT®I,1 0

Next, we compute the eigenvectors of H(?). Let \ be an eigenvalue of H (). We need to verify that

vRe,v®ey, -, vReqE R24” are the eigenvectors of H(?) corresponding to ), for a particular
v e RH yet to be determined. That is, we need to ensure that for all 1 < i < d, the equation
(H®? — \,42)(v ® e;) = 0 has a non-zero solution for v. Notice that

;1 M ®I
HO e = [ Gl e H wee

= ([—5?\% _‘;]}ﬂ ® Id> (v®e) (25)

([ =M, —6M |
=\|-oMT ap,|Y)@en

Since A is an eigenvalue of H (2), the determinant of the matrix H ) — AT,z equals zero. Hence
2d
-A; -0M _ A, -0M _
([ N ([0 Mon) o g
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Consequently, from Eq. (23], we conclude that there always exists a non-zero vector v € R?? such

that (H®) — AI,22)(v®e;) = 0. Since v # 0, itis evident that v ® €1, v @ €, --- , v D ey € R24*
are linearly independent, and thus they represent d eigenvectors corresponding to \. [

Proposition A.7 (Eigenvectors Structure of H at the Origin). Consider the dynamics given

by Eq. (19), where we denote H := —NV/?Rg(0). If X is an eigenvalue of H € deQXQdQ, then
there exist at least d eigenvectors associated with A in H. These d eigenvectors take the form

2 . . . .
vRe,vRes - ,vR ey € R where v € R?? is a vector to be determined and e; is the unit
vector representing the i-th column of the identity matrix Iy € R%*?,

Proof. In the matrix factorization model, at the origin the gradient Vg (fo) = 0 and thus H))(0) =
0 and the Hessian matrix reduces to H(?)(0), making H = —V?R5(0) = —H)(0).

Let’s denote the residual matrix at the origin as M = (A.B. — M)g,, where at the origin

(A., B.) = (0,0). For the vectorized parameter 6., the matrix H := —V?R5(0) can be formulated

as a block matrix, with the diagonal blocks being 0. The specific format is as follows:
0 —0M ® Iy

—oMT ® Ig 0 ’

By Lem.[A.2] the proof is completed. O

H=H®? = 27)

Lemma A.3 (Eigenvectors Structure of /1 at Second-order Stationary Point). Let Q denote an
Q. invariant manifold or sub-Qy, invariant manifold defined in Prop. and and consider
a second-order stationary point 6. within Q, i.e., VRg(0.) = 0 and 8 'V?Rs(0.)0 > 0 for all
0 € Q). Then, the eigenvectors corresponding to the negative eigenvalues of the Hessian matrix
H (8..) are contained within the span of the eigenvectors corresponding to the negative eigenvalues
of H?)(8,).

Proof. Recall the definitions of H (1) (@) and H(? () given by:

dz
HO(©0):= 3 Vo (fo); (Vo (fe>j)T,

ij=1

d2
H®(0):= 3 Es [(fo— 17); V5 (£o).]

The Hessian matrix H (0) at @ is H(0) := H)(0) + H?)(9).

The manifold €2 is an affine subspace with orthogonal complement denoted by Q. Let H have the
following block representation in the bases of €2 and Q-:
H,, H 12] _

(28)

H =
|:H21 H22

Since (2 is an invariant subspace under the gradient flow, we have HO < 2 for all 8 € (2, which
implies that H15 = 0. Since H is symmetry, we have Ho; = 0.

Let A < 0 be a negative eigenvalue of H := H (6,.) with v as the corresponding eigenvector. Since
H; is positive semi-definite, v must lie in oL

At a critical point 8, = (A., B..), by direct calculation, the gradient Vg fg_ can be structured as:

- B, -
B,
- I® B.
Vofo.=| anl anl --- agl | = { AT oI ] , (29)
aiel agel -+ agel ¢ 2d? xd?
| argd aggl -+ aged |
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where ® denotes the Kronecker product.

Note that Vg (fo-) j is the j-th column of matrix Vg fg_ and it falls precisely within the defined 2,
invariant manifold or sub-£2;, invariant manifold €2. Therefore, we have:

.
(Vo(fo.);) v=0 v1<j<d (30)
which implies that v is orthogonal to the image of Vg ( fo, ), placing it in the null space of H 1) (8,).
As a result, we have:
H(0.)v = (H(l)(ac) + H(Q)(HC)) v=H?@,)v=\v.

Thus, the eigenvector v of the Hessian H (6..), corresponding to the negative eigenvalue ), is also an
eigenvector of H(?)(8..), confirming that v is within the span of the eigenvectors of H?(8,). O

A.6 Transition to the Next Rank-level Invariant Manifold

Proposition A.8. The linear combination of the eigenvectors of H®): ¢;(v @ e;) + ca(v @ e3) +
-+ cq(v ® ey) falls within the invariant manifold £ (c), where ¢ = (c1,ca,+ - ,¢q) .

Proof. Notice that
cilv@er) +e(v®er)+ -+ cq(v@ey)
=v®[c1e; + coeg + -+ + caed] (3D
=vRc

By Definition the data-independent invariant manifold generated by c is Qi(c) =
{(A,B)|a;,b; € span{c},V1l < 4,5 < d}. If 8 = (A,B) € Qi(c), then A, B must take
the form

Bic Ba+1€

pac Ba+tac
A= .|, B= . , (32)

Bac Baac
for some B = [B1, B2, , P24 € R?4, and the vectorized parameter 8 = vec((A, B)) € R
takes the form 8 @ c¢. Let 3 = v, and the proof is complete. O
Lemma Ad. Suppose oy, ,ap1 € R are linearly independent, the data-
independent invariant manifold exhibits the property Qp(a1, - o) + Qi(@kr1) =

Qpi1(o, a0, gyr).

Proof. Assumethat @ = (A, B) € Qp41(a1, g, -+, ap+1). Then A, B should adopt the form:
k k

A=Y Bia] +Bmal, B=) el +vene. (33)
i=1 i=1
Denote ¢; = {,ﬁy Z} € R??, then the vectorized parameters 8 := vec(6) can be expressed as:
k
0= Zci@?ai—i—ck“ & Otft1- (34)
i=1
k
Since we know that Y ¢; ® a; € Qp(a1, an, -+ , ) and 41 ® a1 € Oy (@), it is straight-
i=1
forward to validate that Q1 (@1, a2, -+, op11) = Qp(ar, a2, o) + Q1 (@g41)- O

Assumption A.1 (Unique Top Eigenvalue). Let M = (A.B. — M)s,_ be the residual matrix at
the critical point 0. = (A, B..). Assume that the top eigenvalue of the matrix {5?\4T %M} is

unique.
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Assumption A.2 (Second-order Stationary Point). Let Q2 be an 2y, invariant manifold or sub-§2y,
invariant manifold defined in Prop.[A.1|or[A.2] Assume 0. is a second-order stationary point within
Q, ie, VRs(0.) =0and 0" V>Rs(6.)0 > 0 forall 6 € Q.

Theorem A.4 (Transition to the Next Rank-level Invariant Manifold). Consider the dynamics
0 = —V Rg(0). Let p(0y,t) denote the value of 0(t) when 6(0) = 6. Let Q be a Qy, invariant

manifold or sub-Qy, invariant manifold. Let 0. € 2 be a critical point satisfying Assump.[A.1|and
Then, for randomly selected 0y, with probability 1 with respect to 0y, the limit

P(0¢,t) := lim <BC + abg,t + L log 1) (35)
a—0 A1 «@

exists and falls into an invariant manifold Q.11. Here A1 is the top eigenvalue of negative Hessian

—V2Rs(8.).

Proof. At the critical point 8., we denote the negative Hessian as H := —VQRS(OC). Let \ € R
be the largest eigenvalue of H, with corresponding eigenvectors qi1, qi2, - - , q1i; -

Denote ¢; = (6p — 0.,q1;),V1 < j <ly,and v; = 2?:1 ¢;q1;. For a randomly selected 6, with
probability 1, there exists at least one j such that ¢; # 0.

Consider the path z,(t) := ¢ (HC + avy,t+ )\% log é) for every o > 0. By Prop. the limit
z(t) := limy—0 24 (t) exists and satisfies the dynamics z(t) = ¢(z(0), ).

Furthermore, V¢ € R, there exists a constant C' > 0 such that

AL —Ag

§ Ca2> 122

11
0, +aby,t + —log — | — 2(t
H@< Tafetry Og@) z()a

for every sufficiently small o, where A\; — Ao > 0 is the eigenvalue gap.

This implies that the limit lim, ¢ ¢ (BC + afg,t + /\—11 log é) exists and
- . 1 1 . 1 1
P(0.,t) :=lim ¢ | O. + aby,t + —log— | = lim ¢ | O. + avy,t + — log — | .
a—0 A1 (e} a—0 A1 o

Assuming 6, € €2, and satisfies Assumps.[A.1|and[A.2] we aim to show the existence of a rank-(k+1)
invariant manifold €2 containing 8. + awv;.

Define the following matrices:

dz
HW(0,):= > Vo, (fo.); (Vec (fec)j)T,

i,j=1
d2

H®(0,) :=> Es [(fo. — £*); V3. (fa.);] -
i=1

The Hessian matrix H (6..) at 6, can be expressed as H(6,.) := H™)(0.) + H?)(8..), and we have
H=—-H(®.,).

Assump. and Lem. imply that there exist exactly d eigenvectors associated with the top
eigenvalue A\ of —H (2)(00). These eigenvectors are of the form v ® e; fori = 1,...,d, where
v € R?? is a vector to be determined and e; is the i-th standard basis vector in R?. By Assump.
and Lem. the eigenvectors corresponding to A\; of H are contained within the span of the
eigenvectors associated with the negative eigenvalues of H(?)(8.,).

Prop.[A.§|ensures that the escaping direction v; lies within a rank-1 invariant manifold €2;. Lem.[A.4]
then guarantees the existence of an invariant manifold €241 that includes 8. + av;. Since 21 is

invariant under the gradient flow, the trajectory ¢ (OC + avy,t+ )\% log %) remains within 1.

Finally, since €251 is a closed subspace, the limit $(., t) lies in 4 1, concluding the proof. [
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A.7 Minimum Rank

Theorem A.5 (Minimum Rank). Letr Q2 denote an invariant as defined previously. Assume Wy
achieves a global minimum within each invariant manifold Q. If the limit W = lim,_,0 W (al)
exists and is a global optimum with W (i, j) = M (i, j) for all (i, j) € Sg, then

W € argmingy rank(W) s.t. W (i,5) = M(i,§),¥(i,§) € Sa. (36)

Proof. Consider the invariant manifold €2, which is defined as follows:
Q= (o, - ,ar) = {(A, B)|a;,b. j € span{a, - ,ai}, V1 <i,j <d},

where a; denotes the i-th row of A, b. ; denotes the j-th column of B, and avy, . . ., oy, are indepen-
dent vectors that span the invariant subspace associated with €2y.

According to Thm.[A.4] the training trajectory adheres to a hierarchical traversal across invariant
manifolds. For any matrix C' with rank(C') < k, we will show that there always exists @ = (A, B) €
Q. such that AB = C. Therefore, €2, contains all matrices of rank k.

In fact, Since rank(C') < k, we can express C as a sum of k rank-one matrices: C' = Zle u;v;
where u; and v; are column vectors. By the definition of Qy, for any 8 = (A, B) € Qy, each
row of A and each column of B can be expressed as a linear combination of {a, -, a}:

k k o
a; =3 ;_;cijo by =30 dijo; where ¢;; and d;; are scalars. We can write:

k
D1 €10
A= : B= Y0 daoy - YL diga] -

k
D1 Cdi Y

Now, we can express the product AB as: AB = Zle Z?=1 (Zld:l clidjl) ozl-cx;r By choosing
appropriate values for ¢;; and d;;, we can make AB = C. This is possible because the outer

products oqozjT span the same subspace as the rank-one matrices w; v, in the expression of C.
Therefore, for any matrix C with rank(C) < k, there always exists 8 = (A, B) € €, such that
AB=C.

If the output matrix W attains optimums within each €2, it suggests that the optimization process
is selecting the best approximation from the set of all possible rank-%k matrices. Provided that each
step in the optimization is optimal, the resulting solution will naturally be the matrix with the lowest
feasible rank that satisfies the matrix completion criteria, thereby completing the proof. O

A.8 Minimum Nuclear Norm Guarantee

Lemma A.5 (Minimal Nuclear Norm Computation). Given a matrix M to be completed with
observed diagonal entries, i.e., diag(M ) = v, the minimal nuclear norm solution among all possible
completions is ||v]|1.

Proof. The nuclear norm of a matrix is the dual of the spectral norm || - ||2, defined as:
lA]l« = max (A, X).

[1X2<1

Given that || diag(sign(v))||2 < 1, for any matrix A with diag(A) = v, it follows that:
|A[l. = (A, diag(sign(v))) = (v,sign(v)) = [lv]1.

Specifically, the nuclear norm of the diagonal matrix with v on its diagonal is || diag(v)||. = ||v||1,
which establishes that the diagonal matrix with v is indeed a minimizer for the nuclear norm.
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Diagonal Observations

Proposition A.9 (Minimum Nuclear Norm Guarantee in Diagonal Case). Consider the dynamics
0 = —VRg(0), where 6(t) = (A(t), B(t)) and denote W, = A(t)B(t). If the observation data is
diagonal, and if for a full rank initialization Wy, the limit W= limg 0 Woo (aWy) exists and is a
global optimum with Wij = M, for all (i,j) € S, then

W € argming, [|[W||. st Wi = M,;,V(i,j) € Sa. 37)

Proof. Without loss of generality, assume that M is a diagonal matrix given by:

H1
2

Hd

By Lem. the minimal nuclear norm among all possible completions is |p1| + |p2| + - -+ + |pal-
When the matrix to be completed is diagonal, the evolution of the i-th row of A is influenced only by
the i-th column of B. Hence, the dynamics decouple into d independent parts, each equivalent to
learning a scalar y;. The learning process thus unfolds in d stages, with each stage passing through a
critical point to learn a respective ;.

By Lem.[A.2] the second term of the Hessian matrix can be expressed as:

0 —0M R I4

(2) _
H™ =\ _smm o1, 0

According to Lem. the d eigenvectors of H(?) take the formv ® e, vQes,..., v eq € R2d2,
where v € R?¢ is a vector to be determined and e; is the unit vector corresponding to the i-th column
of the identity matrix I; € R4*,

(1) Suppose 11 > po > -+ > g > 0.

With a infinitesimal initialization, the training dynamics first focus on the element with the largest
singular value, then proceed sequentially to blocks with smaller singular values. This pattern of
learning is consistent with the concept of “sequential learning” as reported in the literature (Gidel
et al.l 2019;|Gissin et al.l 2019} Jiang et al., 2023)).

For a diagonal observation matrix, the residual matrix § M at any critical point remains a diagonal
matrix. While starting to learn p; from a critical point, direct calculation confirms that vector
v = [e;,e;]T € R??. Escaping from each saddle point ., the trajectory 8(t) — 6. approximates
Zle ci(v ® e;), which satisfies B; = (A") ;. Thus, learning a diagonal matrix M using the
asymmetric model A B is equivalent to using a symmetric model AA . The final outcome ensures
that diag(AB) = diag(AA") = diag(M).

The nuclear norm of AAT equals the sum of its eigenvalues, which is precisely the trace of the
matrix, and tr(AAT) = tr(M) = py + pg + - - - + pug. Therefore, the nuclear norm of the learned
matrix W = AB = AAT remains || + |pa] + -+ + |pal.

(i) If some p; < 0, assume without loss of generality that |p1| > |p2] > -+ > || > 0.

While starting to learn p; from a critical point, direct calculation confirms that v =
[e;,sign(u;)e;] T € R, Escaping from each saddle point ., the trajectory 6(t) — 6, approxi-
mates Y% ¢;(v @ e;), satisfying B; = sign(y;)(AT) ;. Hence, AB = AAT Q, where Q is an
orthogonal matrix given by:

sign(p1)

Q- sign(u2)

sign(yLa)
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The final result ensures that diag(AB) = diag(AAT Q) = diag(M), meaning diag(AAT) =
diag(QM). The nuclear norm of AA T equals the sum of its eigenvalues, which is the trace of the
matrix, and tr(AA ") = tr(QM) = |uy| + |p2| + -+ + |1al-

Since an orthogonal transformation does not change the nuclear norm of a matrix, the nuclear norm
of the final learned matrix W = AB = AATQ is still |y | + |p2| + - -+ + |p2al- O

Disconnected with Complete Bipartite Components

Theorem A.6 (Minimum Nuclear Norm Guarantee). Consider the dynamics 6 = —V Rg(0),
where 0(t) = (A(t), B(t)), and let Wy = A(t)B(t). If the observation graph associated with the
matrix M to be completed is disc/o\nnected with complete bipartite components, and if for a full
rank initialization Wy, the limit W = lim,_,o W (aW)) exists and is a global optimum with

ﬁ\/ij = M, for all (i,j) € S, then
W € argming, [|[W||. st Wi = M,;,V(i,j) € Sa. (38)

Proof. Consider a matrix M € R* composed of m connected components, with each component
forming a complete bipartite subgraph. Since M is disconnected, it can be represented in a block
diagonal form without loss of generality:

M,

M-,
M = . ,

M,

where each block M; € R%*%_ and Y- d; = d,Y."", d; = d, representing the sum of the
dimensions of the blocks.

Each block M corresponds some singular values of the corresponding Hessian matrix at a critical
point. With a infinitesimal initialization, the training dynamics first focus on the block with the largest
singular value, then proceed sequentially to blocks with smaller singular values. This pattern of
learning is consistent with the concept of “sequential learning” as reported in the literature (Gidel
et al.,[2019; |Gissin et al., [2019; Jiang et al.| [2023)).

Since each connected component of M forms a complete bipartite subgraph, the block M, is fully
observed. We can do singular value decomposition (SVD) on each sub-block M; as M; = UiEiV;T,
where U; and V; are orthogonal matrices, and X; is a diagonal matrix with the singular values of M.

Construct block diagonal matrices U and V' as follows:
Uy Vi i
U, Vv
U= . , V=
Un Vin
This leads to the diagonal matrix:

b3} 1 T

UMV = > _ e

z)m Hadl

Orthogonal transformations preserve the nuclear norm, so by Lem. [A.5] the minimal nuclear norm
among all possible completions is the sum of the absolute values of the diagonal entries, i.e.,

pa] + w2l + -+ [pal-
Consider an incomplete matrix M whose associated observational graph is divided into m connected

components, denoted by L1, Lo, ..., Ly,. For each component L,, we define Scf P as the subset of
observed indices within L,, where 1 < p < m and S is the set of all observed indices.
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For each L,,, we can identify row indices R, and column indices C), corresponding to the observed
entries in L, as follows:

o e L, e e L,
R,={i|35:(i,5) € Sz"}, Cp={j|3i:(i,j) € Sz"}.

Here, R, includes the row indices and C,, includes the column indices of the entries observed in L.

Define AZ» and B”» as the submatrices of A and B corresponding to R, and C), respectively. The

evolution of A7 is influenced only by BZ». Thus, the dynamics decouple into m independent parts,
each equivalent to learning a fully observed matrix M.

Accordingly, we partition A and B into m blocks:
Ay

where A; = AL and B; = BLs,

Denote L; = ||A; B; — M;||3. The overall loss function L = Y_." | L; can be decomposed into m
independent parts. Performing orthogonal transformations A; = UiT A; and B; = B,;V;, we obtain
a diagonal loss L; = ||A;B; — 3|3 for1 <i < C.

Since gradient descent is the steepest descent in the /o norm and orthogonal transformations preserve
this norm, the dynamics of optimizing L; are equivalent to those of optimizing L;.

Without loss of generality, assume j1 > o > - -+ > pg > 0. Otherwise, as with Prop.[A.9] a sign
orthogonal transformation @ can be applied without changing the nuclear norm.

By Prop. the learning result for a diagonal matrix implies B, = AZT , which means B;V, =
U'TA].
The final learning result }
Ay
A = E s B = [Bl e Bm] R

Am
satisfies B = AT,
The result ensures that diag(AB) = diag(AA") = diag(X). The nuclear norm of AAT equals
the sum of its eigenvalues, which is the trace of the matrix, and Tr(AA ") = Tr(2) = |uy| + |po| +
o .

Since orthogonal transformations do not alter the nuclear norm of a matrix, the nuclear norm of
W = ABisalso |u1] + |u2| + - - - + |4, concluding the proof. O

B Experimental Setup and Supplementary Experiments

In this section, we present the supplementary experiments mentioned in the main text and the details
of experiments.

B.1 Experimental Setup

For all our experiments, we employ gradient descent with a carefully chosen small learning rate. A
learning rate is deemed suitable when it yields a smooth, monotonically decreasing training trajectory
for the loss function, free from any abrupt fluctuations or oscillations. We initialize all model
parameters using a Gaussian distribution with a mean of zero and a variance that is detailed for each
specific experiment. Because of the small size of the experiment, the experiment can be completed
on a single CPU.

The criterion for the sufficiency of training in all cases is a training loss that falls below 10719,
To ascertain the rank of the matrix produced by the learning process, we utilize a technique of
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extrapolation with an infinitesimally small initialization. As depicted in Fig.[3(b), if a singular value
persistently diminishes in response to decreasing initialization magnitudes, it is then inferred that
such a singular value will not contribute to the rank in the context of an infinitesimal initialization.

We have included code in the Supplementary Material that determines the connectivity of a partially
observed matrix and provides specific examples illustrating the implicit regularization effects. This
code can be used to reproduce our results and explore the relationship between data connectivity and
the implicit biases of matrix factorization models in various matrix completion scenarios.

B.2 Connectivity Experiments

In the connectivity experiments corresponding to Fig. |I| we explore the behavior of randomly
generated 4 x 4 matrices with intrinsic ranks of 1, 2, and 3. To investigate the impact of sampling
density on matrix reconstruction, we sample matrices at three different levels: 2rd — r2, which
meets the threshold for exact reconstruction, 2rd — r2 — 1, which is just below the threshold, and
2rd — 2 + 1, which exceeds the threshold.

For each sampling size, we randomly generate 10 sets of sampling positions. We then assess the
connectivity of the sampled positions and compute both the rank and the nuclear norm of the solutions
obtained through gradient descent. As an illustration, in Fig. panel (a) presents a scenario with
connected sampling positions, panel (b) shows disconnected sampling positions, and panel (c) depicts
disconnected sampling with each disconnected component forming a complete bipartite graph.

X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
) (a) Connected ) ) (b) Disconnected ) (;) Disconnected with complet_e

bipartite components

Figure B1: Examples of connected sampling and disconnected sampling patterns in Fig.

In the connectivity experiments depicted in Figs. 2Jc-d), we examine the behavior of randomly
generated matrices of size 4 x 4 and 10 x 10 with a rank of 1. The matrices are sampled at a size of
2rd — r2, which corresponds to the threshold for exact reconstruction. We evaluate two connected
and one disconnected sampling patterns.

Fig.[BZ(a) displays the first connected sampling pattern, where all entries in the first row and the first
column are sampled. Fig.[BZ|b) illustrates the second connected sampling pattern, which forms a “Z”
shape across the matrix. Fig.[BZc) shows the disconnected sampling pattern, where the samples are
split into two unconnected blocks, one in the top-left and the other in the bottom-right of the matrix.
A similar approach is taken for the 10 x 10 matrices.

For Figs. 2] (a-b), we performed 100 random initializations for each initialization scale, recorded the
mean and standard deviation, and plotted them on the figure. For a sequence 1, x2, - - - , x,, the
mean is calculated by & = % >, x;, and the standard deviation is calculated by:

1 _
o= n_lz(xifx)?

i=1

Figs. 2Jc-d) demonstrate that when the target matrix has a rank of 1 and the number of samples
meets the minimum requirement for reconstruction with connected sampling positions, the matrix
factorization model is capable of accurately reconstructing the original target matrix.
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X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X

(a) Connected sampling 1 (b) Connected sampling 2 (c) Disconnected sampling

Figure B2: Examples of connected sampling and disconnected sampling patterns in Fig. c).

In scenarios where the target matrix has a higher rank, we have extended our experiments accordingly.
For a randomly chosen 4 x 4 matrix with rank 2, we selected a sample count less than the threshold
of 2rd — r? = 12, specifically 10 samples, while ensuring that the sampling pattern is connected, as
shown in Fig. The resulting solution from the matrix completion has a rank of 2, which is the
minimal rank that fits the sampled data.

X X X X
X X X X
X X X X
X X X X

Figure B3: The sample pattern in Fig.

Fig.[B4Jreveals distinct behaviors of the matrix completion depending on the scale of initialization.
With a larger initialization, the third and fourth singular values of the completed matrix remain
relatively significant, suggesting that the model does not converge to the lowest rank solution. On
the other hand, with a smaller initialization, the third and fourth singular values are uniformly small,
indicating that the model successfully converges to the lowest rank solution.
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o] ¢ EA AL . A8 N 4a AEa 5 10°4
§ 1o s ngu:arva:ue; P S (—3 1072 4 singuiarvalue1 | § ® Connectivityl
2 =3 4 ingular value z A Singular value 2 ks . vl
5 o Singularvalue3 ¢® ¢ "-"._" 510744 o Singuiarvalies | 3 10727 M C?nnecwlt.y?
é, 10-5{ © Singularvalue 4 \ ‘; Se RN 3. e Singularvalue4 | @ A Disconnectivity
e v e 2 10-6 |
5o | FNERRL T Weatd | 517 | trebebratamdoaniont | © . | agtit s
1077 A P oo (&% % o © 10-8 4 fo.")o Faa iyt X b o<
o o o Po® D ‘
o D ()
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 100

Trail(randomly generated matrix) Trail(randomly generated matrix) Trail(randomly generated matrix)

(a) Initialization scale o = 10~! (b) Initialization scale ¢ = 10~" (c) Reconstruction error

Figure B4: For a randomly selected 4 x 4 matrix with rank 2, we chose 10 samples, fewer than the
threshold 2rd — r? = 12, ensuring connected sampling positions, as shown in Fig. The figures
show the experimental results for the four singular values of the matrix learned under Gaussian
initialization with mean 0 and standard deviations of 10~! (a) and 10~7 (b), respectively. (c)
Reconstruction error of the solutions for a 4 x 4 matrix reconstruction problem with M * randomly
sampled at rank 7 = 1 and sample size set to the minimum reconstruction setting n = 2rd — r2. Red
and blue scatter points represent two connected sampling patterns, while green points represent a
disconnected pattern.
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Figure BS5: (a) The matrix to be completed, with unknown entries marked by *. (b-d) Evolution of
singular values for A, B, and W, during training. (e) Training loss for the disconnected sampling
pattern. (f) Learned values at symmetric positions (0, 1) and (1, 0) under varying initialization scales
(zero mean, varying variance). Each point represents one of ten random experiments per variance;
labels show initialization variance. Other symmetric positions exhibit similar behavior. (g) Learned
output at the saddle point corresponding to the red dot in (e). (h) Final learned solution of the GLRL

algorithm (Li et al.,[2020).

B.3 Equivalent Sampling Patterns

For a given sample size, there are different sampling models corresponding to connected or discon-
nected sampling. As shown in Fig.[BT] 7 observations are sampled, but different sampling positions
affect connectivity or disconnection. To thoroughly study all possible cases, we examine all sampling
cases of a 3 X 3 matrix completion, as illustrated in Figure 2{c).

For a 3 X 3 matrix, the sample size varies from 1 to 9. When using the matrix decomposition
model fg = AB for matrix completion, the dynamics obtained by exchanging rows or columns or
transposing the matrix to be completed are equivalent. These three operations allow us to divide all
sampling patterns equally.

For sample size = 1, there is only one sampling pattern in the equivalent sense, and the observation
matrix P is:
1 00
P = [0 0 O] .
0 00

where 1 indicates that the position is observed and non-zero, and 0 means that the position is not
observed or is 0.

For sample size = 2, there are only 2 sampling patterns in the equivalent sense:

11 0] 1 0 0]
P =10 00 ,P=]010
0 0 0 0 0 0

For sample size = 3, there are only 4 sampling patterns in the equivalent sense:

11 1 11 0] 11 0] 100
Plzlo 0 O],P2: 100 ,P,=1[0 01 ,P4:l0 1 0]

000 0 0 0 0 0 0 00 1

For sample size = 4, there are only 5 sampling patterns in the equivalent sense:
11 1 110 110 110 110
pP=|10 0/,P,b=(1 1 0[,Ps=|0 1 1|,P,=|1 0 0|,Ps=1]0 0 1
0 0 0 0 00 0 00 0 0 1 0 01
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For sample size = 5, there are only 3 sampling patterns in the equivalent sense:

111 111 110
Plzll 1 O],szll 0 0],133:[1 1 01
000 100 00 1

For sample size = 6, there are only 4 sampling patterns in the equivalent sense:

111 11 1 11 1 110
Plzll111,P2:110,P3:11O,P4:[011]
00 0 00 1 1 0 0 10 1

For sample size = 7, there are only 2 sampling patterns in the equivalent sense:

1117 111
P=1111/,Pp=[110
1 0 0 0 1 1]

For sample size = 8, there is only 1 sampling pattern in the equivalent sense:

111
P1:l111]
110

For sample size = 9, there is only 1 sampling pattern in the equivalent sense:

111
Plzll 1 1]

1 11

B.4 Initialization Scale Analysis

Our experimental findings indicate that when the observational data is connected, matrix factorization
models often learn the lowest-rank solution starting from a small initialization. However, the required
scale of initialization is not constant across different instances. We empirically observed that if the
magnitude of the numerical values in the matrix to be completed varies significantly, an extremely
small initialization is necessary, which, in some cases, can exceed machine precision.

Consider the following two simple 2 X 2 matrix completion problems, with the only difference being
that the number 3 in the first row is replaced by 20. When training begins from a small initialization,
for M, the fourth element only needs to learn the value 6 to be a rank-1 solution. However, for Mj,
the fourth element needs to learn the value 40 to achieve rank-1.

1 2 1 2
M4:[3 x]’ M5:[20 x]'
Fig.|B6|illustrates the difficulty in learning these two examples. For My, an initialization variance of
approximately 10~ 7 is sufficient to learn the lowest-rank solution. In contrast, for M3, an extremely
small initialization variance is required, making it challenging to learn a rank-1 solution. Yet, with
an exceedingly small initialization variance of 1033, we can still observe the second singular value
plummeting to zero. The origin is a saddle point. The smaller the initialization, the longer it will stay
at the origin. If initialization continues to decrease, training will stagnate. Therefore, if the magnitude

difference is even greater, such as replacing 20 with 100 in M5, then with the small initialization
allowed by machine precision, it is nearly impossible to learn the value 200 completely.

B.5 Dynamics of Deep Matrix Factorization

In the context of depth-3 matrix factorization models, we consider the functional form:

fo = ABC, where A,B,C e R

Figs.[B7)and [B§|suggest that even for a depth-3 model, the learning process exhibits a progression
from low rank to high rank structures.
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Figure B7: Deep Matrix factorization models learn adaptively from low rank to high rank with
small initialization. (a) The matrix to be completed, the x position is unknown. (b) The value at *
learned under different initialization scales (mean is zero, variance changes), 10 random experiments
were done under each variance, and each blue point represents an experiment. (c¢) The training loss
curve with an initial variance of 10~!4. (d) Evolution of singular values for fg = ABC during
training. The count of significantly non-zero singular values is indicative of the rank.

B.6 Incorporating Attention Mechanisms

Within the Transformer architecture, the matrix factorization component retains its significance. The
attention mechanism is formalized as follows:

XWo, W;; X7
Vdy,

where the row-wise softmax operation is applied to the attention scores, and the sum is over the h

different attention heads, with Wq,, Wik, , Wy, W, representing the learnable weight matrices

for queries, keys, values, and output transformations, respectively, and dy, is the dimensionality of the
key vectors.

h
fo(X) = Z softmax,qy XWyWo,,
i=1

The attention module’s ability to capture low-rank representations is reflected in the depth-2 matrix
factorization model. As illustrated in Fig.[B9] the attention models consistently learns representations
that evolve from lower to higher ranks.
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Figure B8: Deep Matrix factorization models learn adaptively from low rank to high rank with
small initialization. (a) Evolution of the [o-norm of the gradients for all parameters throughout the
training process. (b-d) Evolution of singular values for matrices A, B, and C during training. The
count of non-zero singular values is indicative of the rank.
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