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Abstract

The reasoning ability of large language models (LLMs) has been rapidly advancing
in recent years, attracting interest in more fundamental approaches that can reliably
enhance their generalizability. This work demonstrates that model complexity
control, conveniently implementable by adjusting the initialization rate and weight
decay coefficient, improves the scaling law of LLMs consistently over varying
model sizes and data sizes. This gain is further illustrated by comparing the
benchmark performance of 2.4B models pretrained on 1T tokens with different
complexity hyperparameters. Instead of fixing the initialization std, we found that a
constant initialization rate (the exponent of std) enables the scaling law to descend
faster in both model and data sizes. These results indicate that complexity control
is a promising direction for the continual advancement of LLMs.

1 Introduction
In recent years, large language models (LLMs) have achieved unprecedented progress, demonstrating
impressive performance on a wide range of tasks [2, 36, 58, 66, 70, 77]. The key to this success is the
improved generalizability of these models, in particular, their reasoning ability. Various approaches
have been explored to enhance reasoning, such as post-training with reinforcement learning [30, 21],
high-quality math and code data with reasoning traces [21], chain-of-thought and related prompting
strategies [67], and the separation of reasoning and memory in pretraining [71].

This work identifies model complexity as the key factor in the development of the reasoning ability
of LLMs. Complexity control can be implemented through various means, such as adjusting the rate
of parameter initialization [39, 88, 89, 84, 73] or applying stronger penalties on parameter norms
[84]. Similar to the gene that determines the characteristics of an organism, these designs directly
regulate the reasoning ability of LLMs.

An illustration is provided in Figure 1. On the left, a pretrained model with large complexity (large
initialization scale) fails to make meaningful next-token predictions on unseen test data. In the
middle, with moderate complexity (the commonly used initialization scale), the model demonstrates
basic knowledge of grammar (e.g. “finds that”) and vocabulary (e.g. “Jessica”), as well as the
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Figure 1: Next-token prediction accuracy with varying model complexity. The colors indicate the
probability of each token predicted by the models Model complexity decreases from left to right, as
the initialization rate γ = 0.1, 0.5, 1 (see Section 3 for the definition of γ). These models have the
same shape (180M parameters) and are trained the same dataset (40B tokens).

induction head mechanism [43] (e.g. the repeated phrase “September 12, 2024”). On the right, the
low-complexity model (i.e. with small initialization scale) further captures sophisticated semantic
reasoning, successfully predicting “Plaintiff Michael Anderson” given the context “Anderson v.
Carter” despite that the full name “Michael Anderson” has not appeared before, and also predicting
“required medical treatment” given that Anderson was punched by Carter.

Intuitively, smaller complexity forces the model to compress data into a smaller set of production
rules, revealing the deep dependency among the tokens and preventing plain memorization. Previous
studies [39, 88] have shown that with a smaller initialization scale, neurons within each layer tend to
evolve within a few groups, a phenomenon known as condensation, which limits the effective number
of neurons. Readers are referred to an overview of condensation [69]. Likewise, models trained
with stronger penalty on parameter norm may converge to solutions with smaller norms, resulting
in lower-complexity outputs. Thus, it is promising that these techniques can enhance the reasoning
ability of LLMs.

As a verification of this intuition, our experiments exhibit improved scaling laws in data size and
model size, as well as higher scores over almost all benchmarks (+4.6% for 0.9B model with 600B
data, and +3.4% for 2.4B model with 1T data, averaged over 15 tasks). Compared with the standard
deviation (std) of parameter initialization, the initialization rate (the exponent of std as a function of
network width) turns out to be the right invariant for the scaling laws. This is in accordance with
previous works [39, 88] on the phase diagram of neural network training. We provide some heuristic
calculations to explain how complexity control facilitates the learning of multi-step reasoning.

2 Related works

LLMs reasoning ability Even advanced LLMs such as GPT-4 often struggle with implicit reasoning
over parametric knowledge [56, 28, 47, 45, 3, 72], revealing their limited ability to internalize
structured facts and rules. Verbalized reasoning strategies such as chain-of-thought can substantially
boost performance, particularly for large models [67, 75, 54, 37, 74, 18, 33]. However, understanding
the underlying capacity for implicit reasoning remains a critical challenge, often studied by controlled
experiments [46, 13, 63]. This work takes the more intrinsic perspective of complexity control.
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Effect of initialization Parameter initialization is known to be influential to the training and
performance of classical neural networks [4, 10, 80, 14, 27, 40, 50, 52, 68]. For instance, distinct
phases (the linear and condensed regimes) can be induced in wide ReLU networks by varying
initialization rates [39, 88], and training in the condensed regime tend to fit data with lower-complexity
functions [81, 85, 82, 86]. The particular case of Transformer language models has also been studied
[25, 38, 59, 61, 78, 91, 83, 84], with particular interest on the impact of initialization on training
stability and efficiency. Experiments on toy datasets [83, 84] show that small initialization scales
assist Transformers to identify the elementary functions when fitting synthetic compositional data.
However, the influence of initialization on the reasoning ability of Transformers trained on natural
language data remains to be explored.

Weight decay [29] introduced weight decay as a method to improve the generalization of neural
networks. Many subsequent works have explored its role in controlling model complexity and
enhancing generalization [8, 7, 5, 42, 20, 65]. More recently, weight decay has been shown to be
particularly important for achieving better generalization [44, 60].

In this work, we systematically investigate how controlling pre-training complexity, via initialization
strategies and weight decay, affects the performance of LLMs. Unlike prior studies that focus
on training stability or synthetic tasks, we evaluate the impact across a wide range of downstream
benchmarks and analyze the underlying mechanisms, aiming to offer practical guidance for large-scale
model pre-training.

3 Complexity control

In this section, we introduce the approach to modulate the model complexity.

Initialization rate γ Given any trainable parameter matrix W ∈ Rdin×dout . We initialize its
elements according to the following normal distribution:

Wi,j ∼ N
(
0,
(
d−γ
in

)2)
,

where γ is the initialization rate. Specifically, the initialization scale decreases as γ increases. Note
that γ = 0.5 is commonly used in many default initialization methods, such as LeCun initializa-
tion [31] and He initialization [22]. As the network width towards infinity [39, 88], the training of
the network with γ > 0.5 exhibits significant non-linear characteristics, i.e., condensation. Therefore,
initialization scales with γ > 0.5 are generally considered small. Tuning γ is a scalable approach for
complexity control.

Weight decay coefficient λ Given any trainable parameter θt where t denotes the current training
step. Define θ̂t as the parameter after optimizing by gradient and moment, the weight decay is
implemented by

θt+1 ←− θ̂t − λCθt, (1)

where λ is the weight decay coefficient.

4 Results

To evaluate the impact of complexity control, we train LLMs based on the Llama- architecture [58]
under different levels of model complexity. We examine scaling laws with respect to both model size
and training data size, and compare different models across a range of benchmarks. Detailed setup of
training and evaluation is provided in Appendix B.

4.1 Scaling law

We first establish three model complexity configurations: (1) the small-complexity setup with
γ = 1, λ = 1, (2) the large-complexity setup with γ = 0.5, λ = 0.1, and (3) the commonly used
default configuration (e.g., GPT2, HuggingFace) with σ = 0.02, λ = 0.1. Under each configuration,
we train 0.8B-parameter models with varying training data scales ranging from 0.2 billion to 1.4
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billion tokens. Figure 2 (left) demonstrates the relationship between test loss and data scale across
different complexity configurations. The curve of small-complexity (green) exhibits a distinct leftward
shift relative to the large-complexity (purple), suggesting that complexity controlling can effectively
improve the sample efficiency. Additionally, while the test loss of the large-complexity model
demonstrates comparable to the standard configuration at smaller data scales, their performance
diverges as data size increases. Specifically, the former configuration achieves progressively lower
test loss than the latter, indicating superior scalability of the γ-initialization approach with steeper
scaling slopes. Besides, we train models with distinct model sizes by 1 billion tokens. Figure 2 (right)
reveals similar patterns in the relationship between test loss and model size. Although σ-initialization
achieves lower test loss with smaller models, its performance plateaus as the model size increases,
resulting in significantly higher loss compared to γ-initialized models at larger scales. These results
illustrate the scalability potential of the γ-initialization method, maintaining performance advantages
across expanding parameters and data scales.

Figure 2: Test loss across varying data and model scales under different complexity configurations.
Left: Test loss progression for 0.8B-parameter models trained with data scales ranging from 0.2B
to 1.4B tokens. Right: Test loss versus model parameter counts (50M-0.8B) with fixed 1B training
tokens. Line colors correspond to different complexity configurations.

4.2 Evaluation

Table 1: Evaluation of models with different model complexities.

Models1 0.9B Large 0.9B Small 2.4B Large 2.4B Small
(γ, λ) (0.5,0.1) (1,1) (0.5,0.1) (0.58,1)

MMLU 49.9 52.5 (+2.6) 60.4 64.4 (+4)
MMLU-Pro 17.6 21.5 (+3.9) 30.6 30.1 (-0.5)
BBH 33.3 34.9 (+1.6) 42.4 43.7 (+1.3)
ARC-C 46.1 49.8 (+3.7) 58.6 60.7 (+2.1)
TruthfulQA 53.4 56.8 (+3.4) 58.7 61.7 (+3)
WinoGrande 68.0 72.2 (+4.2) 73.1 76.9 (+3.8)
HellaSwag 63.0 67.3 (+4.3) 71.2 75.4 (+4.2)
AGIEval-EN 25.3 29.1 (+3.8) 33.2 35.6 (+2.4)
OpenBookQA 38.8 39.6 (+0.8) 41.8 43.4 (+1.6)
CommonsenseQA 57.7 67.2 (+9.5) 70.4 76.9 (+6.5)
GPQA 25.9 26.8 (+0.9) 29.0 31.7 (+2.7)
MATH 5.9 11.5 (+5.6) 34.3 35.3 (+1)
GSM8K 21.8 40.2 (+19.4) 52.8 63.8 (+11.0)
MBPP 6.6 10.8 (+4.2) 20.6 22.4 (+1.8)
IFEval 31.3 32.0 (+0.7) 34.7 40.9 (+6.2)

1 “Large” and “Small” mean large complexity and small complexity, respectively.

To assess the impact of complexity control, we adopt reasonable complexity configurations and train
LLMs with the following setup: (1) 0.9B-parameter models on 600B tokens from SlimPajama [53]
and (2) 2.4B-parameter models trained with 1T high-quality corpus. We evaluate the performance
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of our models across a comprehensive set of benchmark tasks. As shown in Table 1, the perfor-
mance of small-complexity models improves significantly. Specifically, complexity controlling yields
substantial gains in reasoning capabilities. On math-related tasks, two small-complexity models
achieve improvements of 19.4 and 11.0 points on the GSM8K benchmark, respectively, as well
as 5.6 and 1 points on the MATH dataset. Moreover, these small-complexity models demonstrate
notable performance enhancements across other reasoning tasks, including Winogrande(+4.2,+3.8),
HellaSwag(+4.3,+4.2), and CommonsenseQA(+9.5,+6.5). These results demonstrate that prin-
cipled control of model complexity can significantly enhance the overall capabilities of LLMs,
particularly in reasoning tasks. Note that small initialization may yield slower training. For 2.4B
model, the performance of γ = 0.58 is slightly better than that of γ = 1 in Table 5 in Appendix.

Complexity control also significantly improves the performance of base models, with results summa-
rized in Table 4 in Appendix C. As quantified in Figure 3, the small-complexity model attains greater
score increments across most tasks at the SFT stage.

Figure 3: Performance improvement via SFT across complexity configurations(0.9B model). It is
quantified as the performance gap between the SFT model and the corresponding base model.

5 Analysis

To investigate the effect of initialization scale and weight decay in complexity control, we trained
180M-parameter models with different complexity configurations. We conduct analysis from evalua-
tion and parameter analysis, which yield mechanistic insights into complexity control.

5.1 Influence of initialization scale and weight decay

Figure 4: Parameter norm evolution across complexity configurations. Left to right: λ = 0, 0.1, 1;
Line colors correspond to γ = 0.1, 0.3, 0.5, 0.8, 1.

Examining the interplay between initialization scale γ and weight decay λ on model complexity
is critical. Figure 4 visualizes the temporal evolution of parameter norms under varying γ − λ,
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demonstrating that large γ coupled with large λ systematically induces lower model complexity.
Specifically, with small λ (λ = 0, 0.1), configurations with larger γ converge to smaller complexities.
However, with large λ (λ = 1), models with different γ converge to comparable small norm.

5.2 Alignment between complexity and capability

We perform evaluations of models across multiple benchmark tasks. Figure 5A depicts the perfor-
mance distribution of the average score, GSM8K, and HellaSwag, showing better performance as
stronger complexity control. As shown in Figure 5B, model performance demonstrates a strong
inverse correlation with model complexity. Full evaluation results are provided in Appendix E.

Figure 5: (A) Evaluation scores (average, GSM8K, HellaSwag) under varying complexities. Top:
Performance landscape across γ − λ with color indicating score (dark: low, light: high). Bottom:
Score-complexity relationships with points indicating the models and the dashed lines denoting
baseline performance levels. (B) Task-specific Spearman correlations between model complexity and
task score. Stronger negative correlations (approaching -1) indicate greater performance enhancement
through complexity control.

5.3 Model Analysis

Embedding space The embedding space reflects the model’s representation of the vocabulary and
its learning patterns. We compare the cosine similarity of the 350 most frequent embedding vectors
under different initialization scales. The results in Figure 6 demonstrate that with large complexity
(γ = 0.1), the embeddings are pairwise orthogonal, indicating the model ignores their relationship. In
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contrast, controlling complexity (γ = 0.5, 1) significantly increases the similarity among embeddings,
consistent with previous study on condensation phenomenon [39]. This analysis suggests that small
complexity encourages the model to find associations among tokens.

Figure 6: Cosine similarity among 350 embedding vectors which occur most frequently in training
dataset under initialization scales γ = 1, 0.5, 0.1 (λ = 0).

Attention matrix For each trainable parameter matrix W ∈ Rdin×dout , we define the following
metrics to measure its condensation degree and low-rank degree, respectively.

Dc(W ) :=
1

dindout

∑
i,j

W T
i Wj

||Wi||2 · ||Wj ||2
, Ds =

maxi SW ,i∑
i SW ,i

, (2)

where Wi and SW ,i means the i-th row of W and the i-th singular value of W . Larger values
of Dc and Ds indicate fewer effective directions in matrix W , suggesting W learns a smaller set
of features for fitting dataset. Figure 7 exhibits the Dc and Ds of the query projection and key
projection matrices of models with distinct complexities. The results demonstrate that controlling
model complexity effectively increases Dc and Ds across the attention matrices, suggesting that the
attention modules in small-complexity models focus more on the fundamental relationships between
tokens within sequences, which results in stronger generalization and reasoning ability.

Figure 7: Dc and Ds of WQ and WK in each layer under different model complexity configurations.
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6 Discussion

6.1 Training Stability

A potential concern in small complexity is training stability, particularly the emergence of loss spikes
during optimization. This instability tends to escalate with increasing model scale, as observed in our
experiments. To address this challenge in training our 2.4B parameter models, we adopt the γ = 0.58
which is not too large, and implement embedding normalization and sandwich normalization, which
successfully mitigate the loss spike phenomenon. A detailed discussion is provided in Appendix D.

6.2 Training dynamics

Distinct γ − λ configurations induce distinct learning dynamics and complexity trajectories, accom-
panied by different performance evolution patterns. We evaluate the two 2.4B models referenced in
Table 1 every 5000 steps during pre-train and obtain the dynamics of the average score. Figure 8 char-
acterizes the temporal evolution of model complexity and the average score. For the large-complexity
model (γ = 0.5, λ = 0.1), complexity initially increases followed by progressive decay, during which
performance exhibits slow improvement in the ascending phase but accelerates substantially after the
complexity turning. Conversely, small-complexity configurations maintain monotonic complexity
growth with steady performance gains throughout training.

Figure 8: The evolution of parameter norm and average score with two distinct γ − λ configurations.

6.3 Theoretical analysis

This section employs heuristic calculations to analyze how small initialization enhances the general-
ization of LLMs.

Recall that a 2-layer net f : Rd → R with 1-homogeneous activation (such as ReLU) can be written
compactly as fπ(x) :=

∫
σ(w · x)dπ(w) for some finite signed measure π over the parameter space

Rd (without loss of generality, we can replace x by [x, 1] to account for the bias) [15, 17]. There
are two common functional spaces for these functions. In the kernel regime [14, Theorem 3.9], the
function space is characterized by the RKHS norm [48]

∥f∥H = inf
π

∥∥∥ δπ

δπ0

∥∥∥
L2(π0)

=
(∫ ∣∣∣ δπ

δπ0
(w)

∣∣∣2dπ0(w)
)1/2

, s.t. f = fπ and π ≪ π0

where π0 is some base distribution (typically the initialization distribution of w) and δπ/δπ0 is the
Radon-Nikodym derivative. In the mean-field regime [40, 50], the function space is characterized by
the Barron norm [16, 17]

∥f∥B = inf
π
∥π∥TV = inf

π

∫
d|π|(w), s.t. f = fπ and supp(π) ⊆ Sd
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where ∥ · ∥TV denotes total variation and π is supported on the unit sphere Sd. Naturally, we can
define an interpolation between these norms: for any γ > −3/2,

∥f∥γ := inf
π

∥∥∥ δπ

δπ0

∥∥∥
L3+2γ(π0)

, s.t. f = fπ and supp(π) ⊆ Sd

and by 1-homogeneity π0 can be assumed to be supported on Sd as well. One can check that
∥ · ∥γ=−1/2 = ∥ · ∥H and ∥ · ∥γ=−1 = ∥ · ∥B. By Jensen’s inequality, the function space of ∥ · ∥γ
becomes larger as γ decreases. In particular, if γ ≤ −1, then π does not have to be absolutely
continuous with respect to π0, i.e. it can develop singular parts, sometimes known as “condensation"
[9]. Else, γ > −1 and π must have the form aπ0.

The question is how γ affects deep networks. Let M(Rd,Rk) denote Rk-vector-valued finite
measures over Rd. For simplicity, consider deep residual nets, xl = xl−1 + fl(x

l−1) for l = 1, . . . L,
where each block fl : Rd → Rd is a 2-layer net parametrized by some πl ∈ M(Rd,Rd). For any
fixed sequence of input weights (wl)

L
l=1 ∈ RL×d, fixed (πl), and an input x0 drawn from some

data distribution, the activation sequence
(
σ(wl · xl)

)
is a stochastic process with a potentially

complicated dependency structure. This is intended to capture cross-layer collaborations in LLMs or
“circuits", such as the induction head [43], IOI circuit [62], and arithmetic circuits [35]. Therefore,
we model the parameter distribution of the full network by π ∈ M(RLd,RLd), instead of just the
sequence (πl), in order to model the dependency among the activated parameters. A generalization
of the norm ∥ · ∥γ from 2-layer nets to deep residual nets can be defined by

∥f∥γ = inf
π

∥∥∥ δπ

δπ⊗L
0

∥∥∥
L3+2γ(π⊗L

0 )
= inf

π

(∫ ∥∥∥ δπ

δπ⊗L
0

(⊕L
l=1wl)

∥∥∥3+2γ L∏
l=1

dπ0(wl)
)1/(3+2γ)

which ranges among all parametrizations (πl) of f and the resulting dependency π with respect to
the data distribution. To study ∥ · ∥γ , we make the following assumptions:

1. Among the approximate global minimizers of the loss, training initialized with rate γ for
any γ > −3/2 always converges to a minimizer f∗ with the minimum ∥ · ∥γ norm. This
assumption holds for 2-layer nets in the kernel regime (γ = −1/2) when trained by gradient
descent [79], and we expect similar behavior in general settings.

2. The parameter distribution π∗ of each approximate global minimizer f∗ can always be
decomposed into a weighted sum of product measures

π∗ =
∑
i

ciπ
i, ci ∈ R, πi =

L⊗
l=1

πi
l , ∥πi

l∥TV = 1

and these πi have disjoint supports (up to π-negligible subsets). Furthermore, the variation
of each πi, namely |πi

l |, is simply π0 restricted to some subset Si
l ⊆ Rd, i.e. |πi

l | =
π01Si

l
/π0(S

i
l ), and there exists some constant 0 < ϵ ≪ 1 such that either π0(S

i
l ) = ϵ or

π0(S
i
l ) = 0.9. The purpose of this assumption is to simplify computation, and we expect

our results to hold in much more general settings.

For each πi, denote by Li the number of πi
l with π0(S

i
l ) = ϵ. This Li can be interpreted as the circuit

depth, the number of layers where πi is non-trivial. The norm of each minimizer f∗ becomes

∥f∗∥γ =
(∑

i

∫ ∥∥∥δ(ciπi)

δπ⊗L
0

∥∥∥3+2γ

dπ⊗L
0

)1/(3+2γ)

=
(∑

i

c3+2γ
i

L∏
l=1

∫ ∥∥∥ δπi
l

δπ0

∥∥∥3+2γ

dπ0

)1/(3+2γ)

=
(∑

i

(
ciϵ

−Li0.9−(L−Li)
)3+2γ

)1/(3+2γ)

= 0.9−L
∥∥ci(0.9/ϵ)Li

∥∥
l3+2γ

Hence, each minimizer can be viewed as a circuit ensemble, characterized by its circuit weights and
circuit depths {(ci, Li)}. Recall that for general lp norms, those with large p are sensitive to the
maximum value, while those with small p are sensitive to the amount of non-zero elements. Thus,
for large γ such as −1/2, the circuit ensemble chosen by training tends to be dense but uniformly
shallow (many ci > 0 but small maxLi), whereas for small γ such as −1, the chosen circuits are
more likely to be sparse and deep (few ci > 0 but Li can be large).
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Intuitively, sparse and deep circuits signify a generalizable solution, as the model has managed to
compress the diverse training data into very few but flexible patterns. Meanwhile, dense and shallow
circuits may imply that the model does not have a deep understanding of the data and has to memorize
a lot. In conclusion, it is plausible that small initialization increases generalizability by shifting the
preference for circuit ensembles. Although our calculation is based on simple residual networks, it is
reasonable to expect that a similar mechanism applies to Transformers.
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A Limitation and Future Work

While our methodology received thorough empirical validation, scaling to larger models and datasets
remains constrained due to computational resource limitations. Future work will prioritize extending
the framework to a larger training scale while exploring complexity control mechanisms during
post-training.

B Experiments Setup

Model architecture Our models are based on the Llama-architecture [58]. Architectural config-
urations for different model scales are presented in Table 2. For the 2.4B variant, we incorporate
embedding normalization and sandwich normalization techniques to enhance training stability.

Table 2: Training Configuration Across Model Scales
No. Model Scale Architecture Configuration Pre-train Datasize

1 180M
Layers: 16

Head Dim: 80
Heads (KV): 16 (16)

40B

2 0.9B
Layers: 32

Head Dim: 64
Heads (KV): 32 (32)

600B

3 2.4B
Layers: 44

Head Dim: 80
Heads (KV): 40 (8)

1T

These configurations are systematically mapped as follows:

• Configuration 1 governs results in:
– Figure 1 and 4
– Section 5
– Appendix E

• Configuration 2 applies to:
– Figure 3, 13 and 14
– Columns “0.9B Large” and “0.9B Small” in Table 1, 4

• Configuration 3 encompasses:
– Columns “2.4B Large” and “2.4B Small” in Table 1 and 4
– Figure 8, 15 and 16
– Appendix D

For Figure 2, the corresponding model specifications are detailed in Table 3.

Table 3: Architecture Configuration adopted in Figure 2.
Model Scale (M) Layers Heads (KV) Head Dim
50 12 12 64

100 16 16 60

200 24 18 60

400 24 24 64

800 32 24 80
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DataSet The 180M models are trained on a carefully curated 40B subset obtained through uniform
sampling from the Memory3 training corpus. The 0.9B models undergo pre-training on a 600B subset
derived from the SlimPajama corpus. Building upon the Memory3 foundation, we expand the training
corpus through a rigorous data processing pipeline that integrates deduplication protocols, multi-
dimensional quality assessment metrics, and optimized domain ratio adjustments. This systematic
curation process yields a refined 1T training dataset, which is the basis for training our 2.4B models.
For the SFT data, we also adopt the SFT data from Memory3.

Training setup The training is implemented using Microsoft’s Megatron-DeepSpeed framework [1],
utilizing a mixed-precision configuration where model parameters, gradients, and activations were
maintained in bfloat16 format while preserving optimizer states in float32 precision for the AdamW
optimizer. The learning rate schedule adopted a cosine annealing strategy with linear warmup, where
the warmup phase spanned the initial 5% of the total training iterations. The learning rate boundaries
were configured with maximum and minimum values of 1× 10−3 and 1× 10−5.

Training cost We present the computational costs for single training sessions across different model
scales. The 180M model required 32 MX-C500 accelerators with a training duration of 12 hours. For
the 0.9B architecture, the training process utilized 400 MX-C500 accelerators over 72 hours. 512
MX-C500 accelerators are employed for training a 2.4B model in one week.

Evaluation Details Our model are assessed across multiple open-source benchmarks via lm-eval-
harness [19], covering areas such as factual knowledge: CMMLU [32], C-Eval [26], MMLU [23]
and its enhanced version MMLU-Pro [64], OpenBookQA [41], and GPQA [49]. Language compre-
hension: BBH [55], ARC-C [11], TruthfulQA [34], WinoGrande [51], HellaSwag [76], AGIEval-
EN [87], CommonsenseQA [57]. Code generation: MBPP [6] and IFEval [90]. Mathematical
reasoning: MATH [24] and GSM8K [12].

C Evaluation of base models

Table 4 presents the evaluation results of the base models. The results reveal that the 0.9B model
with small complexity does not demonstrate a significant advantage, while the 2.4B small-complexity
model achieves measurable improvements. This disparity potentially stems from differences in pre-
training data quality. Specifically, the 0.9B model’s training data (subsampled from the SlimPajama
corpus) exhibits suboptimal quality, limiting its downstream task adaptability.

Table 4: Evaluation of base models

Models1 0.9B Large 0.9B Small 2.4B Large 2.4B Small
(γ, λ) (0.5,0.1) (1,1) (0.5,0.1) (0.58,1)

MMLU 25.7 24.4 (-1.3) 36.5 41.1 (+4.6)
MMLU-Pro 11.8 11.3 (-0.5) 13.4 14.9 (+1.5)
BBH 31.1 31.3 (+0.2) 34.7 35.7 (+1.0)
ARC-C 34.6 35.6 (+1) 39.9 47.0 (+7.1)
TruthfulQA 36.6 36.8 (+0.2) 36.6 41.1 (+4.5)
WinoGrande 59.4 61.1 (+1.7) 64.0 68.0 (+4.0)
HellaSwag 59.4 62.0 (+2.6) 66.5 67.8 (+1.3)
AGIEval-EN 17.8 17.8 20.5 19.9 (-0.6)
OpenBookQA 39 37.8 (-1.2) 42.2 41.6 (-0.6)
CommonsenseQA 19 20.9 (+1.9) 38.2 48.7 (+10.5)
GPQA 23.7 24.6 (+0.9) 24.6 24.8 (+0.2)
MATH 2.0 2.5 (+0.5) 30.0 29.4 (-0.6)
GSM8K 1.9 2.4 (+0.5) 31.0 39.7 (+8.7)
MBPP 0.2 6.2 (+6) 19.2 22 (+2.8)
IFEval 27.2 27.7 (+0.5) 27.0 28.4 (+1.4)

1 “Large” and “Small” mean large complexity and small complexity, respectively.
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D Training Stability

We observe that controlling model complexity induces training instability with loss spikes as the
model scale increases, particularly when employing extremely small initialization scales. The purple
lines in Figure 9 demonstrate the training dynamics (loss and parameter norm evolution) of the 2.4B
model with γ = 1, λ = 1, revealing severe instability that prevents convergence to small-complexity
solutions. Contrastingly, Figures 4, 5 establish that sufficiently large λ values (λ = 1) enable
small-complexity convergence regardless of initialization scale. This insight motivates our strategy:
combining large λ with critical initialization scaling. Inspired by the initialization practices of GPT-2
and DeepSeek-V3, we adopt γ = 0.58 in our 2.4B model’s training. As shown in Figure 9 Table 7,
this configuration achieves stabilized training and better performance.

Figure 9: The dynamics of parameter norm (left) and loss (right) of 2.4B model with γ = 1, λ = 1
(purple) and γ = 0.58, λ = 1 (orange).

Table 5: Evaluation of 2.4B models with γ = 1 and γ = 0.58.
γ 1 0.58

MMLU 65.4 64.4
MMLU-Pro 30.1 30.1
BBH 45.0 43.7
ARC-C 59.0 60.7
TruthfulQA 64.1 61.7
WinoGrande 78.0 76.9
HellaSwag 74.6 75.4
AGIEval-EN 32.2 35.6
OpenBookQA 40.8 43.4
CommonsenseQA 77.7 76.9
GPQA 29.5 31.7
MATH 33.3 35.3
GSM8K 62.0 63.8
MBPP 21.6 22.4
IFEval 42.2 40.9

Average 50.4 50.9

18



E Evaluation of the 180M models

Table 6 comprehensively evaluates all 180M models referenced in Section 5.2, systematically illus-
trating performance improvements through complexity control. Additionally, Figure 10, 11 visualizes
the performance-complexity correlation across all tasks, further validating our conclusions.

Table 6: Evaluation results of the 180M models under varying γ − λ configurations

λ γ Average
Tasks

ARC-C GSM8K TruthfulQA WinoGrande HellaSwag MMLU CMMLU C-EVAL

0

0.1 30.0 25.5 0.5 52.7 51.6 25.3 24.4 25.6 25.5
0.3 29.1 22.6 1.4 50.4 48.3 26.2 25.6 25.5 27.5
0.5 31.9 26.1 2.3 47.4 51.5 33.4 30.8 28.8 32.4
0.8 31.4 23.7 1.7 47.3 50.4 34.4 31.1 29.5 31.1
1.0 31.8 26.1 2.4 46.7 52.6 33.3 29.5 28.0 31.3

0.1

0.1 30.0 22.9 1.3 51.3 51.1 27.0 26.1 25.4 27.7
0.3 31.1 25.9 1.7 48.7 50.9 30.2 29.4 27.6 29.9
0.5 32.2 27.9 2.1 48.5 50.4 34.0 30.4 30.5 34.3
0.8 32.4 25.4 2.7 48.6 51.5 34.6 31.9 31.1 35.2
1.0 32.7 27.8 2.8 49.2 51.9 34.3 30.3 30.1 34.8

1.0

0.1 35.4 31.1 6.1 51.1 51.6 36.1 36.2 36.9 40.3
0.3 35.8 30.0 5.8 50.6 55.4 36.9 36.1 37.1 37.7
0.5 35.5 28.8 5.4 51.2 55.1 36.7 35.5 36.3 38.7
0.8 35.5 29.4 7.2 47.9 53.8 37.3 37.4 38.3 41.1
1.0 35.2 30.1 7.2 50.8 51.2 36.3 35.2 36.6 40.3

Figure 10: Performance landscape of all tasks across γ − λ of the 180M models. The color indicates
the score (dark: low, light: high).
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Figure 11: Score-complexity relationship with dashed lines denoting baseline performance levels.

F Model Analysis

F.1 Embedding Structure of 0.9B and 2.4B models

Figure 12 depicts the cosine similarity among 350 embedding vectors of 0.9B models and 2.4B
models, with different model complexities. The results present a similar phenomenon with Figure 6,
demonstrating that complexity control contributes to a focus on the association among different
tokens.

Figure 12: Cosine similarity among 350 embedding vectors which occur most frequently in training
dataset under different complexities of 0.9B models and 2.4B models. The "Large" and "small" mean
the large complexity and small complexity.

F.2 Attention module of 0.9B and 2.4B models

Figure 13, 14, 15, and 16 exhibit the Dc and Ds of query projection matrices and key projection
matrices in the 0.9B models and 2.4B models, reveals a condensation and low-rank trend of the
small-complexity models.
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Figure 13: Dc of WQ and WK in 0.9B model’s each layer under different model complexity
configurations.

Figure 14: Ds of WQ and WK in 0.9B model’s each layer under different model complexity
configurations.
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Figure 15: Dc of WQ and WK in 2.4B model’s each layer under different model complexity
configurations.

Figure 16: Ds of WQ and WK in 2.4B model’s each layer under different model complexity
configurations.
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