
LINEAR STABILITY HYPOTHESIS AND RANK STRATIFICATION
FOR NONLINEAR MODELS

Yaoyu Zhang1,4∗, Zhongwang Zhang1, Leyang Zhang2, Zhiwei Bai1, Tao Luo1,3, Zhi-Qin John Xu1†
1 School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC

and Qing Yuan Research Institute, Shanghai Jiao Tong University
2 Department of Mathematics, University of Illinois Urbana-Champaign

3 CMA-Shanghai
4 Shanghai Center for Brain Science and Brain-Inspired Technology

ABSTRACT

Models with nonlinear architectures/parameterizations such as deep neural networks (DNNs) are well
known for their mysteriously good generalization performance at overparameterization. In this work,
we tackle this mystery from a novel perspective focusing on the transition of the target recovery/fitting
accuracy as a function of the training data size. We propose a rank stratification for general nonlinear
models to uncover a model rank as an “effective size of parameters” for each function in the function
space of the corresponding model. Moreover, we establish a linear stability theory proving that a
target function almost surely becomes linearly stable when the training data size equals its model
rank. Supported by our experiments, we propose a linear stability hypothesis that linearly stable
functions are preferred by nonlinear training. By these results, model rank of a target function predicts
a minimal training data size for its successful recovery. Specifically for the matrix factorization model
and DNNs of fully-connected or convolutional architectures, our rank stratification shows that the
model rank for specific target functions can be much lower than the size of model parameters. This
result predicts the target recovery capability even at heavy overparameterization for these nonlinear
models as demonstrated quantitatively by our experiments. Overall, our work provides a unified
framework with quantitative prediction power to understand the mysterious target recovery behavior
at overparameterization for general nonlinear models.

1 Introduction

How many data points are needed for a model to recover a target function is a basic yet fundamental problem for the
theoretical understanding of model fitting. For example, in linear regression, a linear target function in general can be
recovered when the training data size n is no less than the model parameter size m. Similarly, in band-limited signal
recovery, we have the Nyquist-Shannon sampling theorem stating that a periodic signal with no higher frequency than
f (with m = 2f coefficients) can be exactly recovered from n > 2f uniformly sampled points [1]. Above results
indicate a phase transition of the target recovery accuracy as a function of the training data size at n = m. Then
n > m is often referred to as the overdetermined/underparameterized regime whereas n < m is often referred to as the
underdetermined/overparameterized regime. Traditional learning theory suggests that a model in the overparameterized
regime is likely to overfit the data [2, 3], thus fails to explain why overparameterized deep neural networks often
generalize well in practice [4, 5].

Motivated by the success of deep neural networks (DNNs), there emerges a trend to study general models with nonlinear
architectures/parameterizations for target recovery, e.g., linear models with deep parameterization [6], deep matrix
factorization models [7, 8, 9], deep linear networks [10, 11, 12]. It has been demonstrated that these nonlinear models
are capable of recovering target functions even at heavy overparameterization. In this work, we refer to this phenomenon
as the recovery mystery of nonlinear models. To understand this mystery, a popular approach is to analyze in detail the
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training dynamics of these nonlinear models on a case-by-case basis in order to uncover the underlying implicit bias for
each nonlinear model, such as the low-rank bias in deep matrix factorization models [7, 8, 9] and low-frequency bias in
deep neural networks [13, 14, 15]. Following this approach, many works advance our understanding about the recovery
mystery for certain nonlinear models. However, this approach encounters huge difficulty in quantitatively analyzing
deep neural networks. In addition, it fails to provide a unified mechanism underlying the recovery mystery for general
nonlinear models.

In this work, we take a novel approach to this recovery mystery. Specifically, we move the focus from the detailed training
dynamics in previous implicit bias studies to a general macroscopic behavior—transition of the target recovery accuracy
as a function of the training data size. Our study uncovers a new quasi-determined regime at overparameterization
n < m in which a given model is capable of recovering a given target function. This quasi-determined regime is
determined by the linear stability for recovery of the target function (different from the numerical linear stability in
Refs. [16, 17]). Supported by experiments, we propose a linear stability hypothesis that linearly stable interpolations
are preferred by nonlinear training. Importantly, by proposing a rank stratification and establishing the linear stability
theory, our work show that many long standing open problems in nonlinear model fitting reduce to the validity of
this hypothesis. For example, the cause of target recovery at overparameterization, the effective size of parameters
and the implicit bias for a nonlinear model, as well as the advantage of the general layer-based architecture and the
superiority of the convolutional architecture specifically for neural networks. Specifically, for any nonlinear model, our
rank stratification uncovers a model rank for each target function in the model function space, which quantifies the data
size needed for its linear stability. Therefore, our rank stratification is a powerful tool to obtain quantitative predictions
about the data size needed to recover a target function in any nonlinear model. These predictions are numerically
demonstrated for matrix factorization models, two-layer tanh-NNs of a fully-connected or convolutional architecture,
and remain to be demonstrated for various other models.

Our linear stability hypothesis, rank stratification and linear stability theory get inspiration from experiments, predict
experiments and are supported by experiments. In Section 2, we show how we obtain the linear stability hypothesis
from the experimental observation of a simple nonlinear model. To understand the condition of the linear stability, we
propose a rank stratification for general nonlinear models in Section 3. Moreover, we demonstrate that the model rank
of a target function obtained by rank stratification can exactly match with the transition of recovery in experiments, thus
well serving as an “effective size of parameters” for this target function. In Section 4, we further establish the linear
stability theory based on the rank stratification, which uncovers a quasi-determined regime at overparameterization with
target recovery capability. In Section 5, we present the rank hierarchies obtained from rank stratification for NNs of
different architectures. Our analysis quantifies the superiority of CNNs to fully-connected NNs for the CNN functions
as further demonstrated by our experiments.

2 Linear stability hypothesis

Unlike linear regression, many nonlinear models (nonlinear in parameters) like DNNs are capable of accurately
recovering certain target functions at overparameterization. As an example, we present the generalization accuracy
of gradient descent training in recovering/fitting different target functions with various sample sizes for the following
two models in Fig. 1. One is a simple nonlinear model fNL(x;θ) = θ0 + θ1x1 + θ2θ3x2 with input x = [x1, x2]

T and
parameter θ = [θ0, θ1, θ2, θ3]

T. The other is its linear counterpart fL(x;θ) = θ0+ θ1x1+ θ2x2 with x = [x1, x2]
T and

θ = [θ0, θ1, θ2]
T. These two models share the same model function space FNL = FL = {a0+a1x1+a2x2|a0, a1, a2 ∈

R}, however clearly differ in their target recovery performance. In Fig. 1(a), the linear model fails to recover all target
functions with training data size less than 3 as predicted by the theory of linear regression. Surprisingly, as shown
in Fig. 1(b), the nonlinear model FNL accurately recovers 1, x1 and 1 + x1 with only 2 data points less than both its
parameter size 4 and the dimension of function space 3. This experiment again confirms the long standing mystery that
nonlinear models in general are capable of recovering certain target functions at overparameterization. Remark that,
though model FNL is very simple, it is not easy to analyze its nonlinear training dynamics. In this situation, we take a
novel approach to understand this recovery/generalization mystery by proposing the following question: When is it
possible to distinguish a target minimizer (based on certain local property) from infinitely many other global minimizers
at overparameterization? Note that a target minimizer is a global minimizer whose output function equals the target
function.

To answer this question, we get inspiration from the following observation. With 2 training data points, model fNL

finds minimizers close to [1, 0, 0, 0]T, [0, 1, 0, 0]T, and [1, 1, 0, 0]T in fitting 1, x1, and 1 + x1, respectively, as shown
in Table 1. By looking into the tangent function space Tθ = span {∂θif(·;θ)}

M
i=1 = span{1, x1, θ3x2, θ2x2} of all

the global minimizers, we notice that Tθ is 2-d at [1, 0, 0, 0]T, [0, 1, 0, 0]T, and [1, 1, 0, 0]T, whereas 3-d at all the other
global minimizers. Remark that, given n > r training data points, a global minimizer θ∗ with a r-d tangent function
space possesses a special local property that the corresponding function f(·;θ∗) can be uniquely recovered in the
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(b) fNL(x;θ)

Figure 1: Average test error (color) vs. the number of samples (abscissa) for different target functions (ordinate). For all
experiments, network parameters are initialized with a normal distribution with mean 0 and variance 10−8, and trained
with full-batch GD with a learning rate of 0.01. The training ends when the training error is less than 10−9. Each test
error is averaged over 100 trials with random initialization.

tangent function hyperplane T̃θ∗ = f(·;θ∗) + Tθ∗ . For example, given 2 different training data points, target function
1 + x1 can be uniquely recovered in T̃θ∗ = {a0 + a1x1|a0, a1 ∈ R} for θ∗ = [1, 1, 0, 0]T. In this paper, we refer to
this special local property as the linear stability for recovery or simply the linear stability (see Definition 1). Then the
output functions of these linearly stable global minimizers are referred to as the linearly stable functions. Inspired by
the above observation, we propose the following linear stability hypothesis for general nonlinear models that:

Linearly stable global minimizers are more likely to be selected by a nonlinear training process.

Clearly, linearly stable functions are more likely to be learned by our hypothesis. Remark that a sufficiently nonlinear
training process is important for recovering a linearly stable target function in practice (an example will be shown in
Fig. 3). By our hypothesis, the linear stability of a target function is the key for its successful recovery. This can be
analyzed rigorously for general nonlinear models as detailed in the latter sections. In the following, we first propose a
rank stratification for general models to uncover a minimal training data size needed for a target function to be linearly
stable.

Table 1: Recovered parameter values with standard deviations for FNL over 100 trials for experiments of the first 3 rows
in Fig. 1(b).

parameter
target function

1 x1 1 + x1

θ0 1.0× 100 ± 9.8× 10−5 4.4× 10−7 ± 4.5× 10−5 1.0× 100 ± 2.7× 10−5

θ1 4.9× 10−5 ± 3.0× 10−4 1.0× 100 ± 5.5× 10−5 1.0× 100 ± 7.1× 10−5

θ2 4.0× 10−4 ± 1.8× 10−3 1.2× 10−4 ± 1.4× 10−3 1.9× 10−4 ± 1.4× 10−3

θ3 1.1× 10−4 ± 1.9× 10−3 6.0× 10−6 ± 1.5× 10−3 2.3× 104 ± 1.4× 10−3

3 Rank stratification

For a linear model
∑m
i=1 θiφi(x) with basis functions {φi(·)}mi=1, it is well known that any target function in its

function space can be stably recovered when the size of training data {(xj , yj)}nj=1 is no less than its effective size of
parameters (or effective degrees of freedom) dim(span{φi(·)}mi=1). Remark that the above intuitive argument requires a
mild assumption on data that rank(φ(X)) = dim(span{φi(·)}mi=1), where [φ(X)]i,j = φi(xj) for i ∈ [m], j ∈ [n].
Therefore, for the linear model θ0 + θ1x1 + θ2x2 with 3 effective parameters, we observe target recovery at n = 3
as shown in Fig. 1. Above result for a linear model can be directly applied to understand the stability of recovery in
the tangent function hyperplane of any parameter point for a nonlinear model. For any nonlinear model fθ = f(·;θ),
T̃θ∗ = {f(·;θ∗) + aT∇θf(·;θ∗)|a ∈ RM} at θ∗ ∈ RM has dim

(
span {∂θif(·;θ∗)}

M
i=1

)
effective parameters. In

T̃θ∗ , f(·;θ∗) in general can be stably recovered when n > dim
(

span {∂θif(·;θ∗)}
M
i=1

)
. A special feature of many

3



nonlinear models is that the effective size of parameters changes over the parameter space. In this work, we formally
define this effective size of parameters as the model rank of θ∗ ∈ RM with respect to the model fθ, i.e.,

rankfθ (θ
∗) := dim

(
span {∂θif(·;θ∗)}

M
i=1

)
. (1)

This definition of model rank is consistent with the definition of rank in differential topology. Remark that, notation
rank(·) without a subscript refers to the matrix rank by default in our work.

Understanding the distribution of the model rank over the parameter space is the first step for a linear stability analysis.
As an example, for the nonlinear model fθ(x) = θ0 + θ1x1 + θ2θ3x2, the model rank at any point θ∗ ∈ R4 is adaptive
as follows

rankfθ (θ
∗) = dim (span {1, x1, θ∗3x2, θ∗2x2}) =

{
2, θ∗2 = θ∗3 = 0,

3, others.
(2)

To consider the linear stability for a target function f∗, one must note thatMf∗ := {θ|f(·;θ) = f∗;θ ∈ RM} referred
to as the target stratifold in this work is a disjoint union of manifolds with different dimensions and model ranks.
For example, the target stratifold for 1 + x1 is {θ|θ0 = 1, θ1 = 1, θ2θ3 = 0}, on which rank-2 is attained only at
θ = [1, 1, 0, 0]T and rank-3 is attained elsewhere. When n > 2, target function 1 + x1 is stable for recovery at the
tangent function hyperplane of θ = [1, 1, 0, 0]T under a mild assumption. Then, our linear stability hypothesis predicts
that 1 + x1 is likely to be recovered through training as numerically demonstrated in Fig. 1.

To quantify the minimal data size needed to recover a target function f∗ in the model function spaceFfθ := {f(·;θ)|θ ∈
RM}, we formally define its model rank as

rankfθ (f
∗) := min

θ′∈Mf∗
rankfθ (θ

′), (3)

with a slight misuse of the notion rankfθ (·) to return the model rank for a function input. Then, the second step for a
linear stability analysis is to stratify Ffθ into function sets of different model ranks from low to high, which forms a
rank hierarchy. For the linear model θ0 + θ1x1 + θ2x2 with a constant rank, its whole function space is rank-3. For the
nonlinear model θ0 + θ1x1 + θ2θ3x2, the rank hierarchy is as follows,

rankfθ (f
∗) =

{
2, f∗ ∈ {a0 + a1x1|a0, a1 ∈ R},
3, f∗ ∈ {a0 + a1x1 + a2x2|a2 6= 0, a0, a1, a2 ∈ R}. (4)

This result shows that 1, x1 and 1+ x1 are rank-2, whereas all the other functions with nonzero coefficients in x2 in Fig.
1 are rank-3. Then, our linear stability hypothesis predicts recovery with 2 data points for 1, x1 and 1 + x1, and 3 data
points for other function through nonlinear training. Clearly, this prediction perfectly matches with the experimental
results in Fig. 1.

In general, for a differentiable model fθ with M parameters, the standard procedure of rank stratification is comprised
of the following two steps: (1) stratify the parameter space into different model rank levels to obtain the rank hierarchy
over the parameter space; (2) stratify the model function space into different model rank levels to obtain the rank
hierarchy over the model function space. Remark that, the difficulty of rank stratification depends on the complexity of
model architecture as shown in the following sections.

The rank stratification proposed above uncovers that different functions in the function space of a nonlinear model
may have different effective sizes of parameters. Clearly, even when two models share the same model function space,
different parameterization/architecture can lead to very different hierarchies as demonstrated by the above comparison
between fL and fNL. By our linear stability hypothesis, this rank hierarchy indicates an implicit bias towards low model
rank functions over the model function space as detailed later in Section 4. Overall, the proposed rank stratification
is a powerful tool that could explicitly uncover an architecture-specific implicit bias of a nonlinear model. In the
following subsection, we present the rank hierarchy obtained by the rank stratification in a table for a nonlinear matrix
factorization model, and demonstrate the relation predicted by our hypothesis between the model rank of a target
function and its experimental transition of the target recovery accuracy.

3.1 Matrix factorization model: rank hierarchy matches with the transition of target recovery

To demonstrate the power of the rank stratification for general nonlinear models, we consider in this section a practical
nonlinear model of matrix factorization fθ = AB with application in matrix completion. In Table 2, we present its
rank hierarchy obtained through rank stratification (see Appendix Section A.1 for details). All elements in matricesA
andB are trainable parameters. By Table 2, a target matrix f∗ with matrix rank 1, 2, 3, or 4 possesses the model rank
7, 12, 15, or 16, respectively. It can be clearly seen from Fig. 2 that these model ranks exactly match with the transition
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of the target recovery accuracy, i.e., the test error drops rapidly to almost 0 when the size of the observed entries equals
the model rank of the target (marked by a yellow dashed line). This result further demonstrates the importance of rank
stratification for understanding the target recovery behavior of nonlinear models, and supports the validity of the linear
stability hypothesis.

model:fθ = AB,θ = (A,B),A,B ∈ Rd×d

rankfθ (f
∗) f∗

0 0d×d

2d− 1 rank(f∗) = 1
...

...

2rd− r2 rank(f∗) = r
...

...

d2 rank(f∗) = d

Table 2: Rank hierarchy for the matrix factorization model.
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Figure 2: Average test error (color) vs. the number of samples (abscissa) for different target functions (ordinate). The
yellow dashed line for each row indicates the transition when the size of the observed entries equals to the model rank
of the target. Different rows represent different target matrices (see Appendix Section C for details). In particular,
rank(M∗

2k−1) = rank(M∗
2k) = k for k = 1, 2, 3, 4. For all experiments, the weights are initialized with a normal

distribution with mean 0 and variance 10−8, and trained with full-batch GD with a learning rate of 0.05. The training
ends when the training error is less than 10−9. Each test error is averaged over 50 trials with random initialization.

3.2 Quasi-determined regime

From above results, it is clear that there exists a new regime for nonlinear models at overparameterization where a
target function can be successfully recovered. We name this regime the quasi-determined regime formally defined
later in Definition 2. From experiments, the quasi-determined regime covers a wide range of training data sizes from
the model rank of the target function to the size of model parameters. This adaptiveness to the target function is the
key characteristic of the quasi-determined regime absent in conventional regime characterization. Remark that, the
quasi-determined regime is specific to rank-adaptive models in which model ranks are non-constant over their function
spaces. In a model with a constant model rank such as a linear model, the quasi-determined regime is empty because
the model rank of any function in the model function space equals the dimension of the function space above which the
fitting problem becomes determined/over-determined.

As shown in Fig. 3, target recovery in the quasi-determined regime is very different from that in the over-
determined/underparameterized regime: (i) The success or accuracy of recovery depends on the initialization. One
may need to tune the scale of initialization to a sufficiently small value, which leads to a highly nonlinear training
dynamics, in order to achieve a good recovery accuracy. (ii) Increasing the size of training data above the model rank
of the target function further increases the tolerance on the initialization scale and enhances the accuracy of recovery.
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(b) matrix completion, rank=1

Figure 3: Average test error (color) vs. the number of samples (abscissa) over different sizes of standard deviation
of initialization (ordinate). (a) Performance of fitting 1 + x by fNL(x, θ). (b) Performance of completing a rank-1
matrix by the matrix factorization model. We useM∗

1 in Fig. 2 as our target matrix, whose specific form is given in
the appendix. The yellow dashed line for each row indicates the transition when the sample size equals to the model
rank of the target. For all experiments, the network is initialized with a normal distribution with mean 0 and variance
σ2, and trained with full-batch GD with a learning rate 0.05. Each test error is averaged over 50 trials with random
initialization.

These two properties match with the widely-observed behavior of DNNs and other nonlinear models in practice that
good hyperparameter tuning and a large training data size are two important factors for an accurate target recovery
at overparameterization. Therefore, it is reasonable to believe that our quasi-determined regime is relevant to the
training of general nonlinear models in practice. To understand the exact relation among our rank stratification, the
quasi-determined regime and the linear stability hypothesis, we establish in the following the linear stability theory for
recovery for general models.

4 Linear stability theory

In this section, we rigorously analyze the linear stability for general models to address when a function or a minimizer
becomes linearly stable for recovery in the linearized function space, i.e., the tangent function hyperplane. By admitting
the linear stability hypothesis, our results in the following yield quantitative predictions to the global target recovery
behavior of nonlinear models. Remark that our linear stability hypothesis and analysis is inspired by the widely-used
linear stability analysis in mathematics, which serves as a powerful tool to understand the first-order behavior of a
nonlinear system. Also note that all the linear stability in our work refers to the linear stability for recovery in Definition
1. It is starkly different from the commonly considered numerical linear stability for neural networks originated from
the numerical discretization of a continuous training dynamics [16, 17]. Our analysis begins with the following formal
definition of the linear stability.
Definition 1 (linear stability for recovery). Given any differentiable model fθ with model function space Ffθ , loss
function `(·, ·), and training data S = {(xi, yi)}ni=1,
(i) a parameter point θ∗ ∈ RM is linearly stable if f(·;θ∗) is the unique solution to

minf∈T̃θ∗
1

n

n∑
i=1

`(f(xi), yi); (5)

(ii) a function f∗ ∈ Ffθ is linearly stable if there exists a linearly stable parameter point θ′ such that f(·;θ′) = f∗.

Without loss of generality, we consider `(·, ·) to be a continuously differentiable distance function by default and focus
on studying the linear stability of the global minimizers attaining 0 loss as well as the corresponding interpolations,
i.e., functions in Ffθ attaining 0 loss. By the linear stability hypothesis, above formal definition of the linear stability
immediately gives us a novel regime with target recovery capability defined as follows.
Definition 2 (quasi-determined regime). Using any model fθ to fit a target function f∗ ∈ Ffθ from data S =
{(xi, f∗(xi))}ni=1 at overparameterization, the fitting problem is quasi-determined if f∗ is linearly stable for recovery.

In the following, we present our theory of linear stability beginning with a necessary and sufficient condition for linear
stability.
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Lemma 1 (linear stability condition, see Lemma 4 in Appendix for proof). Given any differentiable model fθ and
training data S = {(xi, yi)}ni=1, a global minimizer θ∗ satisfying f(xi;θ∗) = yi for all i ∈ [n] is linearly stable if
and only if rankS(θ∗) = rankfθ (θ

∗), where the empirical model rank rankS(θ∗) := rank(∇θf(X;θ∗)).

2 4 6 8 10 12 14 16
sample size

10 5

10 2

101

Figure 4: The relationship between the number of samples (abscissa) and the test error (color) for different sampling
sequences with specifically designed orders (ordinate) to reconstruct a target matrix with matrix rank one. For a specific
sampling sequence, nt = min

n
{n|rankSn

(θ∗) = rankfθ (θ
∗)} is indicated by cyan dashed curve. The model rank of the

target matrix is 7 indicated by the yellow dashed curve. For all experiments, the parameters are initialized by a normal
distribution with mean 0 and variance 10−8, and trained by the full-batch gradient descent with a learning rate 0.05.
Each test error in the figure is averaged over 50 trials with random initialization.

Note that ∇θf(X;θ∗) = [∇θf(x1;θ
∗), · · · ,∇θf(xn;θ∗)] with X := [x1, · · · ,xn] is referred to as the empirical

tangent matrix. By the above lemma, we can determine the linear stability of a target function by checking whether
there exists a target minimizer satisfying this linear stability condition for the given training data. The intuition of
Lemma 1 is as follows. In the tangent function hyperplane T̃θ∗ , rankS(θ∗) quantifies the number of independent
constraints from data, and rankfθ (θ

∗) quantifies the effective size of parameters. Therefore, the linearized problem
Eq. (5) at a global minimizer θ∗ becomes determined if and only if rankS(θ∗) = rankfθ (θ

∗). Lemma 1 implies
cases in which a target function may not become linearly stable with n = rankfθ (θ

∗) training data points due to the
lack of data independence. For these cases, our linear stability hypothesis predicts a transition of the target recovery
accuracy later than n = rankfθ (θ

∗). We numerically verify this prediction by the following experiments. As shown
in Fig. 2, the minimum sample size to recover a rank one matrix is 7. However, we can design a sample sequence
{(i1, j1), (i2, j2), · · · } with Sn = {((ik, jk),f∗ikjk)}

n
k=1 such that the minimum sample size to satisfy the linear

stability condition in Lemma 1 is larger than 7, that is, nt = min
n
{n|rankSn

(θ∗) = rankfθ (θ
∗)} > 7. In Fig. 4, each

row indicates a specially designed sample sequence with a different nt indicated by the cyan dashed curve. Clearly,
only when the linear stability condition is satisfied, i.e., sample size is no less than nt, the test error drops rapidly to
almost 0. All these experiments confirm that the experimental transition of the target recovery accuracy matches with
the transition of the linear stability of the target. Again, they support the validity of our linear stability hypothesis.

Lemma 1 provides the exact condition about when a global minimizer becomes linearly stable. However, checking
this condition for various global minimizers is a tedious job. In practice, it is important to have a more convenient and
intuitive condition. For example, a model of m parameters can be recovered almost surely from n > m data points
for linear regression. In analogy, we find out that f∗ becomes linearly stable with n > rankfθ (f

∗) data points almost
surely for a model analytic with respect to its parameters by the following theorem.
Theorem 1 (phase transition of linear stability for recovery, see Theorem 4 in Appendix for proof). Given any analytic
model fθ, for any target function f∗ ∈ Ffθ and n generic training data S = {(xi, f∗(xi))}ni=1,
(i) Strictly under-determined regime: if n < rankfθ (f

∗), then f∗ is not linearly stable;
(ii) Quasi-determined regime: if n > rankfθ (f

∗), then f∗ is linearly stable almost everywhere with respect to S.

Above theorem proves a phase transition at n = rankfθ (f
∗) in general for the linear stability of the target function

f∗, which coincides with the experimentally observed phase transition in Figs. 1 and 2. By this theorem, we can
conveniently refer to the fitting problem with training data sizes from rankfθ (f

∗) to the parameter size M as the
quasi-determined regime by default in our paper.
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Figure 5: Learn a 4× 4 full rank target matrix from different sample sizes. Given training samples of size n = 7, 12, 15,
respectively (indicated by black dashed line in (b-d)), (a) average of the ordered eigenvalues of the recovered matrices
are presented; (b,c,d) average of the ordered singular values of the empirical tangent matrix [∂θs(fθ∗)ikjk ]s∈[32],k∈[n]
vs. that of the tangent matrix [∂θs(fθ∗)ikjk ]s∈[32],k∈[16] ({(ik, jk)}16k=1 takes all of the matrix indices) are presented.
Here, θ∗ is the recovered parameter vector at convergence. For all experiments, the parameters are initialized by a
normal distribution with mean 0 and variance 10−8, and trained by full-batch gradient descent with a learning rate 0.05.
Each ordered eigenvalue in the figure is averaged over 50 ordered eigenvalues obtained from 50 trials of training with
random initialization.

In general, the linear stability hypothesis indicates an implicit bias of nonlinear training towards linearly stable
interpolations, which do not necessarily coincide with the target function. By Lemma 1, any interpolation with model
rank higher than data size n is not linearly stable. Thus, we obtain the following corollary showing the implicit bias
towards interpolations with lower model ranks by the linear stability hypothesis.

Corollary 1 (implicit bias of linear stability hypothesis, see Corollary 5 in Appendix for proof). Given any model fθ
and training data S = {(xi, yi)}ni=1, if an interpolation f ′ ∈ Ffθ is linearly stable, then rankfθ (f

′) 6 n.

This bias towards interpolations with lower model ranks highlights the importance of the rank stratification in un-
derstanding the fitting behavior of a nonlinear model. When a rank hierarchy is obtained, we immediately obtain a
quantitative understanding about the intrinsic preference of the nonlinear model. For example, the rank hierarchy in
Table 2 shows that a target with a lower matrix rank has a lower model rank. Therefore the matrix factorization model
is intrinsically biased towards a low matrix rank completion by our linear stability hypothesis. We can predict that, even
in a strictly under-determined regime, a completion of the matrix with model rank no higher than the sample size is
likely to be learned through nonlinear training. In the experiment shown in Fig. 5, we find that completions of matrix
rank 1, 2 and 3 can be reliably learned from 7, 12 and 15 samples, respectively, given a full rank target matrix of size 4.
In Fig. 5(b-d), we further observe that, at these learned parameter points, the empirical model rank equals the model
rank. Therefore, despite the failure of recovering the full rank target matrix in these experiments, our linear stability
hypothesis and its implicit bias Corollary 1 successfully predict the training behavior of the matrix factorization model.
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5 Rank stratification for deep neural networks

By admitting the linear stability hypothesis and establishing the linear stability theory above, the rank hierarchy obtained
by rank stratification becomes the key to understand the target recovery performance of a nonlinear model. In this
section, we present our rank stratification results for DNNs with numerical demonstration of our theoretical predictions.
Our results provide quantitative understandings to the following long-standing open problems: (i) the capability of
target recovery for DNNs at overparameterization; (ii) the specialty or superiority of the DNN model in comparison
to other models. (iii) the impact of architecture on the target recovery performance of DNNs. In the following, we
first present the rank hierarchies for two-layer tanh-NNs with fully-connected or convolutional architectures and their
numerical studies. Later, we provide a rank upper bound estimate with a partial rank hierarchy for general deep NNs. In
the main text, we directly present the results of rank stratification and focus on their implications. All the theoretical
details including the rank stratification, supporting theorems and proofs can be found in Appendix Section A.2.

5.1 Rank stratification for two-layer fully-connected NNs

In Table 3, we present the rank hierarchy for a two-layer fully-connected tanh-NN withm hidden neurons (see Appendix
Section A.2.3 for details). Note that similar rank hierarchies can be obtained for two-layer NNs with other architectures
and other common activation functions. From Table 3, it is clear that two-layer fully-connected tanh-NNs are rank-
adaptive, i.e., different functions occupy different model rank levels, indicating that they are capable of recovering
certain target functions at overparameterization. In addition, they possess the following special property—the model
expressiveness can be (almost) arbitrarily increased without changing the existing rank hierarchy. For example, when
the width of hidden layer increases from m to m′ > m, the model function space is expanded while the function sets at
all model rank levels no greater than m(d+1) remaining unchanged. This is a profound property for a nonlinear model
in the following sense. For conventional models, the improvement of expressiveness is in general at a cost of damaging
the fitting performance over the original model function space. In linear regression or random feature models, adding a
new independent variable or basis function improves the model expressiveness. However, one more data point is needed
to recover all functions in the original model function space. Therefore, we always have a hard time to trade off between
the model expressiveness and the data size needed for target recovery. However, for the two-layer tanh-NNs, the model
rank as an effective size of parameters of any function in the model function space never grows no matter the increase
of width m. We name this property the free expressiveness property. Remark that, this good property is also possessed
by NNs with linear or polynomial activations, but their expressiveness cannot be improved to the extent of universal
approximation. The practical implication of our result is that, when a two-layer tanh-NN is used for fitting, we do not
need to trade the model expressiveness for a good fitting performance. One can simply use a wide NN with sufficient
expressiveness even to fit relatively simple target functions without worrying about the generalization performance.

model: fθ(x) =
∑m
i=1 ai tanh(w

T
i x),x ∈ Rd,θ = (ai,wi)

m
i=1

rankfθ (f
∗) f∗

0 0

d+ 1 FNN
1 \{0} : {a∗1σ(w∗T1 x)|a∗1 6= 0,w∗1 6= 0}

...
...

k(d+ 1)
FNN
k \FNN

k−1: {
∑k
i=1 a

∗
i σ(w

∗T
i x)|a∗i 6= 0,w∗i 6= 0,

w∗i 6= ±w∗j for any i 6= j}
...

...

m(d+ 1)
FNN
m \FNN

m−1: {
∑m
i=1 a

∗
i σ(w

∗T
i x)|a∗i 6= 0,w∗i 6= 0,

w∗i 6= ±w∗j for any i 6= j}
Table 3: The rank hierarchy for two-layer fully-connected width-m tanh-NN.
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5.2 Rank stratification for two-layer CNNs

In Table 4, a rank hierarchy is presented in the first two columns for the following simple two-layer tanh-CNN with
weight sharing

fθ(x) =

m∑
l=1

d+1−s∑
i=1

ali tanh

(
s∑

α=1

xi+s−αKl;α

)
, x = [x1, · · · , xd]T ∈ Rd. (6)

In addition, to uncover the impact of model architecture on the rank hierarchy, we also estimate the model rank of
functions in each function set listed in the first column for the corresponding CNN without weight sharing as well
as the corresponding fully-connected NN. All the theoretical details as well as the results for CNNs with 2D image
inputs can be found in Appendix Section A.2.4 and A.2.5. To illustrate the result in Table 4, we consider a target
function generated by a two-layer width-k tanh-CNN with kernel size 3× 3 and stride 1 on the MNIST dataset. Without
loss of generality, we consider the case without ineffective neurons (whose output weight ali = 0), i.e., mnull = 0.
Given any m > k, the model rank of this target function is 685k in an m-kernel CNN, 6760k in an m-kernel CNN
without weight sharing, and 530660k in a width-26m fully-connected NN. It is clear that all these NNs possess the
free expressiveness property, i.e., the model rank of this target function does not depend on m. However, comparing
different architectures, the model rank of this target function in a CNN is almost three orders of magnitude less than
that in a fully-connected NN. By our linear stability hypothesis and theory, this target function requires ∼ 103 times
more training data to be recovered by a fully-connect NN than by a CNN. Clearly, regarding the recovery of this target
function, the CNN architecture is superior to the CNN architecture without weight sharing, and is far superior to the
fully-connect architecture. Note that, the major gap of model rank is between the CNN without weight sharing (6760k)
and the fully-connect NN (530660k). This two orders of magnitude gap of model rank highlights the importance of
removing all the unnecessary connections in the design of an NN architecture.

f∗ CNN CNN without weight sharing Fully-connected NN

0 0 0 0

FCNN
1 \{0} d+ 1 (s+ 1)(d+ 1− s)− smnull (d+ 1)(d+ 1− s)− dmnull

...
...

...
...

FCNN
k \FCNN

k−1 k(d+ 1) k(s+ 1)(d+ 1− s)− smnull k(d+ 1)(d+ 1− s)− dmnull

...
...

...
...

FCNN
m \FCNN

m−1 m(d+ 1) m(s+ 1)(d+ 1− s)− smnull m(d+ 1)(d+ 1− s)− dmnull

Table 4: The rank hierarchy for two-layer tanh-CNN with weight sharing in Eq. (6). For functions in each function
set over the rank hierarchy, we also present their model rank in the corresponding CNN without weight sharing and
the corresponding fully-connected NN. Here mnull = |{ali|ali = 0}| is a variable counting the number of ineffective
neurons in the target function. Note that, when a bias term is added for each hidden neuron (shared or not according
to the architecture), the model rank of a function in FCNN

k \FCNN
k−1 is k(d + 2), k(s + 2)(d + 1 − s) − smnull and

k(d+ 2)(d+ 1− s)− smnull, respectively, for these three architectures.

5.3 Experimental demonstration of the linear stability hypothesis in two-layer NNs

In Fig. 6, we perform experiments to examine our linear stability hypothesis in two-layer tanh-NNs with different
architectures. Specifically, we consider the following target function in our experiments:

f∗(x) =W ∗[2] tanh(W ∗[1]x), (7)

whereW ∗[2] = [1, 1, 1],

W ∗[1] =

[
0.6 0.8 1 0 0
0 0.6 0.8 1 0
0 0 0.6 0.8 1

]
.

For the training dataset and the test dataset, we sample the input data from a standard normal distribution and obtain the
output values through the target function. We use two-layer tanh-NNs (with a bias term for each hidden neuron) of
various architectures and various kernels/widths to fit randomly sampled training datasets of various sizes from 1 to 63.
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Note that, in a 1-kernel CNN with or without weight sharing or a width-3 fully-connected NN (labeled as 1x in Fig.
6(b-d)), the model rank of the target function equals the size of model parameters. In this situation, the CNN enables a
significantly earlier transition of the target recovery accuracy than the other architectures as shown in Fig. 6(a). However,
This result is trivial in the sense that all the recoveries happen at the conventional over-determined/underparameterized
regime. In Fig. 6(b-d), we increase the kernels/widths of NNs by N times labeled by Nx for each architecture.
Specifically for N = 100, the sizes of model parameters become 700, 1500 and 2100 respectively. The rank hierarchy
in Table 4 gives rise to a constant model rank of 7, 15 and 21 (indicated by yellow dashed lines), respectively, regardless
of the choice of N . In Fig. 6(b-d), we observe delayed transitions of the target recovery accuracy for N > 1, i.e.,
the test error drops to almost 0 at a sample size later than the model rank. However, it is easy to notice that the
observed transition is far closer to the model rank than to the size of model parameters especially when N is large.
We remark that various factors could contribute to a delayed transition of recovery in practice such as a suboptimal
tuning of hyperparameters. In practice, it remains an important open problem to find an optimal training method and
hyperparameters for NNs to enable a recovery of a target function as close as possible to its model rank.

DNN

CNN without 
 sharing

10 20 30 40 50 60
sample size

CNN with 
 sharing

10 6

10 3

100

(a) different network types

1x

3x

10x

34x

10 20 30 40 50 60
sample size

100x
10 6

10 3

100

(b) DNN

1x

3x

10x

34x

10 20 30 40 50 60
sample size

100x
10 6

10 3

100

(c) CNN without weight sharing

1x

3x

10x

34x

10 20 30 40 50 60
sample size

100x
10 6

10 3

100

(d) CNN with weight sharing

Figure 6: Average test error (color) for NNs of different architectures (ordinate) and sample sizes (abscissa) in fitting the
target function Eq. (7). The yellow dashed line for each row indicates the model rank of the target in the corresponding
NN. (a) Two-layer 1-kernel tanh-CNN vs. two-layer 1-kernel tanh-CNN without weight sharing vs. two-layer width-3
fully-connected tanh-NN. Note that these NNs are referred to as 1x for each architecture in (b-d). (b) Two-layer
N -kernel tanh-CNN, (c) two-layer N -kernel tanh-CNN without weight sharing, and (d) two-layer width-3N fully-
connected tanh-NN labeled by Nx for N = 1, 3, 10, 34, 100. For all experiments, network parameters are initialized
by a normal distribution with mean 0 and variance 10−20, and trained by full-batch gradient descent with a fine-tuned
learning rate.

5.4 Rank upper bound estimate for general deep NNs

For a general DNN model, its rank stratification is difficult. The model rank estimate of any given target function f∗ in a
DNN function space requires solving the following two challenging problems: (i) identifying the target stratifoldMf∗

in the parameter space; (ii) finding the minimal model rank over the target stratifold. With the help of the previously
proposed critical embedding operators [18, 19], we can obtain a partial target stratifold and a rank upper bound estimate
for general deep NNs shown in the following theorem (See Appendix Section A.2.1 for details).
Theorem 2 (rank upper bound estimate for DNNs, see Theorem 3 in Appendix for proof). Given any NN with Mwide
parameters, for any function f∗ ∈ Fθnarr in the function space of a narrower NN with Mnarr parameters, we have
rankfθwide

(f∗) 6 rankfθnarr
(f∗) 6Mnarr.
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Here narrower means no larger width in each hidden layer. Applying this theorem to a depth-L width-{mi}Li=0 DNN,
we obtain a partial rank hierarchy illustrated in Table 5. This partial rank hierarchy clearly shows that DNNs are
rank-adaptive in general. Specifically, even in a very large DNN with Mwide parameters, there always exist families of
functions with model ranks far less than Mwide, indicating the target recovery capability at heavy overparameterization.
Importantly, Theorem 3 extends the free expressiveness property observed above for two-layer tanh-NNs to general
DNNs. By our linear stability hypothesis and theory, this result indicates that one can simply use a wide NN with
sufficient expressiveness without worrying about significant deterioration of the target recovery performance.

model: fθ(x) =W [L]σ(· · ·σ(W [1]x) · · · ),W [l] = Rml×ml−1 ,mL = 1, m0 = d

f∗ upper bound of model rank

F{1,1,··· ,1} d+ L− 1

...
...

F{m′i}L−1
i=1

, 1 ≤ m′i ≤ mi dm′1 +m′1m
′
2 + · · ·+m′L−2m

′
L−1 +m′L−1

...
...

F{mi}L−1
i=1

dm1 +m1m2 + · · ·+mL−2mL−1 +mL−1

Table 5: Partial rank hierarchy for general deep fully-connected NNs. F{mi}L−1
i=1

denotes the function space of an

L-layer DNN with width-{mi}L−1i=1 for hidden layers. For simplicity, we consider DNNs without bias terms.

6 Conclusions and discussion

In this work, we establish a framework to analyze quantitatively the mysterious target recovery behavior at
overparameterization for general nonlinear models as illustrated in Fig. 7. We apply this framework to the matrix
factorization model, two-layer tanh-NNs with a fully-connected or convolutional architecture, and successfully predict
their target recovery behaviors even at heavy overparameterization. Remark that our framework relies on a linear
stability hypothesis, which needs to be further verified. If this hypothesis is later systematically verified in experiments
or even get proved theoretically in certain sense, the following five long standing open problems can be answered
quantitatively as follows. Three problems are for general nonlinear models and two problems are specifically for DNNs.
(1) The cause of the target recovery at overparameterization for certain nonlinear models: a rank-adaptive
architecture/parameterization for the nonlinear model.
(2) The effective size of parameters for a nonlinear model: the model rank quantifies the effective size of parameters for
each function in the model function space. Remark that this problem had been proposed by Leo Breiman specifically
for NNs almost three decades ago [4].
(3) The implicit bias of a nonlinear model through nonlinear training: towards lower model rank interpolations.
(4) The advantage of the general layer-based architecture of neural networks: free expressiveness, i.e., expressiveness
can be arbitrarily improved through widening with almost no deterioration of the fitting performance.
(5) The superiority of CNNs to fully-connected NNs: functions in the CNN function space in general possess far lower
model ranks in CNNs than in the corresponding fully-connected NNs.

In certain sense, our theoretical framework reduces all these important problems to the validity of the linear stability
hypothesis. Apart from the evidences provided in this work, the condensation phenomenon [20] during the nonlinear
training of DNNs provides a rationale empirical evidence to support the linear stability hypothesis. For a two-layer
ReLU NN, the condensation happens when input weights of hidden neurons (the input weights of a hidden neuron
consist of all the weights from its input layer and its bias term) condense on isolated orientations. The rank of a
condensed ReLU network is independent of, and far less than, the number of network parameters. For two-layer infinite
width ReLU networks, [20] show that the condensation is a common feature of training networks in the nonlinear
regime of the phase diagram (small initialization regime) for both synthetic and real datasets. Similar observations are
made for three-layer ReLU NNs [21] and networks with different activation functions [22]. In addition, large learning
rate [23] and dropout [24] can facilitate the condensation. Several works provides some preliminary theoretical support
for different activations in the initial training stage [25, 26, 21]. Therefore, the condensation phenomenon suggests
that nonlinear training of neural networks prefers low rank minimizers, which is consistent with the linear stability

12



Figure 7: Illustration of the theoretical framework established in our work linking the architecture of a nonlinear model
to its quantitative target recovery behavior at overparameterization.

hypothesis. In future works, we will look into details of this hypothesis, e.g., its requirement on the training dynamics
for different models, through both experimental and theoretical means.
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A Details of rank stratification

Definition 3 (model rank). Given any differentiable (in parameters) model fθ, the model rank for any θ∗ ∈ RM is
defined as

rankfθ (θ
∗) := dim

(
span {∂θif(·;θ∗)}

M
i=1

)
, (8)

where span {φi(·)}Mi=1 = {
∑M
i=1 aiφi(·)|a1, · · · , aM ∈ R} and dim(·) returns the dimension of a linear function

space. Then the model rank for any function f∗ ∈ Ffθ with model function space Ffθ := {f(·;θ)|θ ∈ RM} is defined
as

rankfθ (f
∗) := min

θ′∈Mf∗
rankfθ (θ

′), (9)

where the target stratifoldMf∗ := {θ|f(·;θ) = f∗;θ ∈ RM}.
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Given a differentiable model fθ, the standard procedure of rank stratification is comprised of the following two steps:
Step 1: Stratify the parameter space into different model rank levels to obtain the rank hierarchy over the parameter
space;
Step 2: Stratify the model function space into different model rank levels to obtain the rank hierarchy over the model
function space.
The difficulty of rank stratification depends on the complexity of model architecture. For example, this standard
two-step rank stratification is straight-forward for fNL = θ0 + θ1x1 + θ2θ3x2 as illustrated in the main text. For
a matrix factorization model, a linear algebra lemma is needed for its rank stratification. For DNN models, rank
stratification is in general difficult. In our work, with the help of the previously discovered embedding principle and
critical embedding operators, we obtain a complete rank hierarchy for two-layer tanh-NNs and a partial rank hierarchy
for general multi-layer DNNs.

A.1 Matrix factorization

A.1.1 Theoretical preparation

Lemma 2 (linear algebra lemma). LetA andB be two (d× d) matrices and rA := rank(A), rB := rank(B),

Γ =

[
I ⊗B
AT ⊗ I

]
,

where I is the (d× d) identity matrix and ⊗ is the Kronecker product. Then rank(Γ) = d2 − (d− rA)(d− rB).

Proof. In order to compute the rank of Γ, we consider the dimension of the null spaceN(Γ) of Γ due to the relationship

rank(Γ) + dim(N(Γ)) = d2.

We will show that dim(N(Γ)) = (d− rA)(d− rB), thus rank(Γ) = d2 − (d− rA)(d− rB), as desired.

Let nA = d − rA, nB = d − rB , and suppose that N(AT) = span{α1, α2, · · · , αnA}, N(B) =
span{β1, β2, · · · , βnB} are the null spaces ofAT andB, respectively. Since for any 1 ≤ i ≤ nA, 1 ≤ j ≤ nB[

I ⊗B
AT ⊗ I

]
[αi ⊗ βj ] =

[
Iαi ⊗Bβj
ATαi ⊗ Iβj

]
=

[
αi ⊗ 0
0⊗ βj

]
=

[
0
0

]
,

we have N(AT)⊗N(B) ⊆ N(Γ).

On the other hand, let 0 6= x ∈ Rd2 be in the null space N(Γ) of Γ, i.e. Γx = 0. We have[
0
0

]
=

[
I ⊗B
AT ⊗ I

]
x =

[
(I ⊗B)x
(AT ⊗ I)x

]
=

[
vec(BXIT)
vec(IXA)

]
=

[
vec(BX)
vec(XA)

]
,

whereX is the inverse of the vectorization operator (formed by reshaping the vector x = [x1, x2, . . . , xd2 ]
T), namely,

X =


x1 xd+1 · · · x(d−1)d+1

x2 xd+2 · · · x(d−1)d+2

...
...

. . .
...

xd xd+d · · · xd2

 .
Therefore, we concludeBX = 0 andATXT = 0. Note that the first equationBX = 0 implies each column ofX is
a linear combination of {β1, β2, · · · , βnB}. Thus, there exists CnB×d such that

X = [β1, β2, · · · , βnB ]C.

Since {β1, β2, · · · , βnB} is linearly independent, the second equationATXT = 0 impliesATCT = 0. Thus, the i-th
row Ci of matrix C satisfies Ci ∈ N(AT) for any i ∈ [nB]. By re-vectorizing x = vec(X) = [x1, x2, . . . , xd2 ]

T, we
have

x = C1 ⊗ β1 +C2 ⊗ β2 + · · ·+CnB ⊗ βnB .
Therefore, we conclude that x ∈ N(AT)⊗N(B) and N(Γ) ⊆ N(AT)⊗N(B).

Now we have N(Γ) = N(AT)⊗N(B), by which

dim(N(Γ)) = dim(N(A)⊗N(B)) = (d− rA)(d− rB),
and rank(Γ) = d2 − (d− rA)(d− rB).
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A.1.2 Rank stratification

Matrix factorization model: fθ = AB with θ = (A,B),A,B ∈ Rd×d.

Step 1: Stratify the parameter space into different model rank levels to obtain the rank hierarchy over the parameter
space.

Given any parameter pointA = [aij ]
d
i,j=1 ∈ Rd×d,B = [bij ]

d
i,j=1 ∈ Rd×d. Consider the tangent space

span
{
P ij ,Qij

}d
i,j=1

,

where P ij =
∂fθ
∂aij

,Qij =
∂fθ
∂bij

and rank(P ij) = rank(Qij) = 1.

By vectorizing P ij
d×d andQij

d×d, we get

vec(P ij) = [P ij11, · · · , P
ij
1d, P

ij
21, · · · , P

ij
2d, · · · , P

ij
d1, · · · , P

ij
dd]

T ∈ Rd
2

,

vec(Qij) = [Qij11, · · · , Q
ij
1d, Q

ij
21, · · · , Q

ij
2d, · · · , Q

ij
d1, · · · , Q

ij
dd]

T ∈ Rd
2

.

Now we put these vectors into a matrix Γ2d2×d2 , namely

Γ2d2×d2 =
[
vec(Q11), · · · , vec(Qdd), vec(P 11), · · · , vec(P dd)

]T
.

Clearly,
rank(Γ) = dim

(
span

{
P ij ,Qij

}d
i,j=1

)
.

Therefore, we only need to compute the rank of matrix Γ.

By exploiting the Kronecker product of matrices, we are able to write Γ in a more concise form:

Γ =



B
B

. . .
B

a11I a21I · · · ad1I
a12I a22I · · · ad2I

...
...

. . .
...

a1dI a2dI · · · addI


=

[
I ⊗B
AT ⊗ I

]
.

Let rA := rank(A), rB := rank(B). By Lemma 2, the rank of Γ is d2 − (d − rA)(d − rB). Therefore the matrix
factorization model possesses the rank levels {d2 − (d− r1)(d− r2)|r1, r2 ∈ [d]} over its parameter space, each of
which is occupied by {(A,B)|rank(A) = r1, rank(B) = r2}.
Step 2: Stratify the model function space into different model rank levels to obtain the rank hierarchy over the model
function space.

Given any matrix f∗ ∈ Rd×d, let r = rank(f∗). By definition, the model rank of f∗ is the minimal model rank among
all parameters recovering f∗. Because

rank(AB) ≤ min{rank(A), rank(B)},
any factorization f∗ = A∗B∗ satisfies rank(A∗) > r and rank(B∗) > r. By the analysis in Step 1, we have
rankfθ (θ

∗) > d2 − (d − r)2 = 2rd − r2. By the singular value decomposition f∗ = UΣV T, A∗ = UΣ
1
2 and

B∗ = Σ
1
2V T recover f∗ with rank(A∗) = rank(B∗) = r. Therefore, rankfθ (θ

∗) attains its lower bound 2rd− r2,
thus rankfθ (f

∗) = 2rd− r2. Then, the matrix factorization model possesses the rank levels {2rd− r2|r ∈ [d]} over
its function space, each of which is occupied by {f ∈ Rd×d|rank(f) = r} as illustrated in Table 6.

Remark that the above analysis serves as a proof of the following proposition.
Proposition 1 (rank hierarchy of a matrix factorization model). Given a matrix factorization model fθ = AB with
θ = (A,B),A,B ∈ Rd×d, for any matrix f∗ ∈ Rd×d, we have model rank

rankfθ (f
∗) = 2rd− r2,

where r = rank(f∗) is the matrix rank of f∗.
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Table 6: Rank hierarchy for the matrix factorization model.

model fθ = AB,θ = (A,B),A,B ∈ Rd×d

rankfθ (f
∗) f∗ argminθ′∈Mf∗

rankfθ (θ
′)

0 0d×d A = B = 0d×d

2d− 1 rank(f∗) = 1 rank(A) = rank(B) = 1,AB = f∗

...
...

...

2rd− r2 rank(f∗) = r rank(A) = rank(B) = r,AB = f∗

...
...

...

d2 rank(f∗) = d rank(A) = rank(B) = d,AB = f∗

A.2 DNNs

A.2.1 Rank upper bound estimate via critical mappings

Rank stratification for DNNs is in general difficult. Luckily, the recent discovery of the embedding principle and the
critical embedding operators provide powerful tools for the rank stratification [18, 19, 27, 28, 29]. In the following, we
first provide a general definition of critical mappings, by which the previously proposed critical embeddings are special
cases. Then, we prove Lemma 3, showing that uncovering critical mappings is an important means for obtaining an
upper bound estimate of the model rank. This general result combined with the embedding principle directly provides a
rank upper bound estimate for general deep NNs illustrated in Table. 5.

Definition 4 (critical mapping). Given two differentiable models fθA = f(·;θA) with θA ∈ RMA and gθB = g(·;θB)
with θB ∈ RMB , P : RMA → RMB is a critical mapping from model A to B if given any θ ∈ RMA , we have
(i) output preserving: fθ = gP(θ);
(ii) criticality preserving: for any data S = {(xi, yi)}ni=1 and empirical risk function RS(·), if ∇θRS(fθ) = 0, then
∇θRS(gP(θ)) = 0.

Lemma 3 (rank upper bound estimate). Given two models fθA = f(·;θA) with θA ∈ RMA and gθB = g(·;θB) with
θB ∈ RMB , if there exists a critical mapping P from model A to B, then rankg(f∗) 6 rankf (f∗) 6 MA for any
f∗ ∈ Ff .

Remark 1. If MB � MA, this upper bound estimate is highly informative, indicating target recovery capability
at heavy overparameterization for model B. Importantly, this lemma establishes the relation between our rank
stratification and previous studies about the critical embedding for the DNN loss landscape analysis. As a result, the
critical embedding intrinsic to the DNN architecture not only benefits optimization as studied in previous works, but
also profoundly benefits the recovery/generalization performance.

Proof. By Definition 2, for any f∗ ∈ Ff , there exists θ∗ ∈ RMA such that rankf (θ∗) = rankf (f∗). Then,
gP(θ∗) = fθ∗ = f∗. Without loss of generality, we consider RS(h) = 1

2

∑n
i=1(h(xi) − yi)2. Then ∇θRS(fθ∗) =∑n

i=1(yi − f∗(xi))∇θ∗fθ∗(xi) and ∇P(θ)RS(gP(θ∗)) =
∑n
i=1(yi − f∗(xi))∇P(θ)gP(θ∗)(xi). Because P is criti-

cality preserving for arbitrary data S, we have ker(∇θfθ∗(X)) ⊆ ker(∇P(θ)gP(θ∗)(X)) for anyX := [x1, · · · ,xn].
Here, ∇θfθ∗(X) = [∇θfθ∗(x1), · · · ,∇θfθ∗(xn)]. Because rankS(P(θ∗)) + dim(ker(∇P(θ)gP(θ∗)(X))) =
rankS(θ∗) + dim(ker(∇θfθ∗)) = n, we have rankS(P(θ∗)) 6 rankS(θ∗) for any data S (for the definition of
rankS(θ∗), see Appendix Section B). Taking the infinite data limit, we obtain rankg(P(θ∗)) 6 rankf (θ∗) 6 MA.
Therefore, rankg(f∗) 6 rankf (f∗) 6MA for any f∗ ∈ Ff .

Theorem 1 (Embedding Principle, Theorem 4.2 in Ref. [19]). Given any NN and any K-neuron wider NN, there exists
a K-step composition embedding P satisfying that: For any given data S, loss function `(·, ·), activation function σ(·),
given any critical point θc

narr of the narrower NN, θc
wide := P(θc

narr) is still a critical point of the K-neuron wider NN
with the same output function, i.e., fθc

narr
= fθc

wide
.

Here wider/narrower means no smaller/larger width in each hidden layer (see either of Refs. [18, 19] for a mathematical
definition). As a direct consequence of Lemma 3 and Theorem 1, we obtain the following theorem.
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Theorem 3 (rank upper bound estimate for DNNs, Theorem 2 in the main context). Given any NN with Mwide
parameters, for any function in the function space of a narrower NN with Mnarr parameters f∗ ∈ Fθnarr , we have
rankfθwide

(f∗) 6 rankfθnarr
(f∗) 6Mnarr.

This theorem gives rise to the partial rank hierarchy exhibited in Table. 5.

A.2.2 Theoretical preparation for two-layer NN rank stratification

Proposition 2. Let σ : R→ R be any analytic function such that σ(nj)(0) 6= 0 for an infinite sequence of distinct indices
{nj}∞j=1. Given d ∈ N and m distinct weights w1, ...,wm ∈ Rd\{0}, such that wk 6= ±wj for all 1 6 k < j 6 m.
Then {σ(wT

ix), σ
′(wT

ix)x1, ..., σ
′(wT

ix)xd}mi=1 is a linearly independent function set.

Proof. For x sufficiently close to 0 ∈ R, we can write σ(x) =
∑∞
j=0 cjx

j , where cj = σ(j)(0)/(j!). Then,
σ′(x) =

∑∞
j=1 jcjx

j−1 . Suppose that the set is not linearly independent. Choose not-all-zero constants {αi}mi=1 and
{βi1, ..., βid}mi=1 such that

x 7→
m∑
i=1

(
αiσ(w

T
i x) +

d∑
t=1

βitσ
′(wT

i x)xt

)
is a zero map on Rd, where xt denotes the t-th component of input. For k, j, i ∈ [d], define the sets

Ak,j := {x ∈ Rd| 〈x,wk ±wj〉 = 0}
Bi := {x ∈ Rd| 〈x,wi〉 = 0}.

Clearly, each Ak,j is the union of two linear subspaces of dimension (d− 1), while each Bi is a possibly empty affine
subspace of dimension (d− 1). Thus,

E := (∪16k,j6mAk,j) ∪
(
∪di=1Bi

)
has Ld Lebesgue measure zero. Let e ∈ Rd\E. Denote pi := 〈wi, e〉 for each i ∈ [m]. Since pi 6= pj and pi + pj 6= 0
whenever i 6= j, we can, without loss of generality, assume that |p1| > |p2| > ... > |pm| > 0. For any sufficiently
small ε and any i, t we have

σ(wT
i (εe)) =

∞∑
j=0

(cjp
j
i )ε

j ,

σ′(wT
i (εe))(εe)t = et

∞∑
j=1

(jcjp
j−1
i )εj .

Thus, for sufficiently small ε,

m∑
i=1

(
αiσ(w

T
i (εe)) +

d∑
t=1

βitσ
′(wT

i (εe))(εe)t

)
=

(
m∑
i=1

αi

)
c0 +

∞∑
j=1

cj

m∑
i=1

(
αi +

1

pi

d∑
t=1

jβitet

)
pjiε

j

= 0.

(10)

We have cj
∑m
i=1

(
αi +

1
pi

∑d
t=1 jβitet

)
pji = 0 for all j ∈ N. In particular, for any j ≥ 2, since nj ≥ 1 and cnj

6= 0,

we have
∑m
i=1

(
αi +

1
pi

∑d
t=1 njβitet

)
p
nj

i = 0, which yields

α1 +
1

p1

d∑
t=1

njβ1tet = −
m∑
i=2

(
αi +

1

pi

d∑
t=1

njβitet

)
p
nj

i

p
nj

1

.

If m = 1, by taking limits j →∞, we have α1 =
∑d
t=1 β1tet = 0.

Otherwise, since |p1| > |pi| for any 2 6 i 6 m, it follows that, by taking limits j →∞,

lim
j→∞

(
α1 +

1

p1

d∑
t=1

njβ1tet

)
= lim
j→∞

−
m∑
i=2

(
αi +

1

pi

d∑
t=1

njβitet

)
p
nj

i

p
nj

1

= 0.
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Thus, we also have α1 =
∑d
t=1 β1tet = 0. For m > 2, we may rewrite Eq. (10) as

α2 +
1

p2

d∑
t=1

njβ2tet = −
m∑
i=3

(
αi +

1

pi

d∑
t=1

njβitet

)
p
nj

i

p
nj

2

for each j ≥ 2, and take limits as we do above to deduce that α2 +
1
p2

∑d
t=1 njβ2tet = 0. By repeating this procedure

for at most m times, we conclude that αi + 1
pi

∑d
t=1 njβitet = 0 for all i ∈ [m]. Then, αi =

∑d
t=1 βitet = 0 for any

i ∈ [m]. For each i,
∑d
t=1 βite

′
t is a linear function of e′ on the open set Rd\E which vanishes on a neighborhood of e,

we must have αi = βit = 0 for any i ∈ [m], t ∈ [d]. Therefore, {σ(wT
i x), σ

′(wT
i x)x1, ..., σ

′(wT
i x)xd}mi=1 must be a

linearly independent set.

Corollary 2 (model rank estimate for two-layer NNs). Let σ = tanh. Given d ∈ N, weights w1, ...,wm ∈ Rd,
a1, ..., am ∈ R, we have

dim(span{σ(wT
ix), aiσ

′(wT
ix)x1, ..., aiσ

′(wT
ix)xd}mi=1) = mw +mad,

where mw = 1
2 |{wi,−wi|wi 6= 0, i ∈ [m]}| indicating the number of independent neurons, ma = 1

2 |{wi,−wi|wi 6=
0, ai 6= 0, i ∈ [m]}|+ |{wi|wi = 0, ai 6= 0, i ∈ [m]}| indicating the number of independent effective neurons. Here,
| · | is the cardinality of a set, i.e., number of different elements in a set.

Proof. Note that σ = tanh is analytic and σ(2n+1)(0) 6= 0 for all n. Because tanh is an odd function, we have
tanh(x) = − tanh(−x) and tanh(0) = 0. Therefore, given wi,wj 6= 0 with wi = ±wj , span{σ(wT

i x)} =
span{σ(wT

j x)} and span{σ′(wT
i x)x1, ..., σ

′(wT
i x)xd} = span{σ′(wT

j x)x1, ..., σ
′(wT

j x)xd}. Since there are mw
different non-zero weights, by Proposition 2 we have

dim
(
span{σ(wT

i x)}mi=1

)
= mw.

Furthermore, note that

span{aiσ′(wT
i x)x1, ..., aiσ

′(wT
i x)xd}mi=1 = span{σ′(wT

i x)x1, ..., σ
′(wT

i x)xd : ai 6= 0, i ∈ [m]}.
Thus, by Proposition 2,

dim
(
span{σ′(wT

i x)x1, ..., σ
′(wT

i x)xd : wi 6= 0, ai 6= 0, i ∈ [m]}
)

=
1

2
|{wi,−wi|wi 6= 0, ai 6= 0, i ∈ [m]}| · d.

Now suppose that wj = 0 ∈ Rd for some j ∈ [m]. Since σ′(wTx) = σ′(0) 6= 0 for all x ∈ Rd,

span{σ′(wT
j x)x1, ..., σ

′(wT
j x)xd} = span{x1, ..., xd}

which consists only of linear functions. By the nonlinearity of tanh, we conclude that

dim
(
span{σ′(wT

i x)x1, ..., σ
′(wT

i x)xd}
)
= mad

and thus dim
(
span{σ(wT

i x), σ
′(wT

i x)x1, ..., σ
′(wT

i x)xd}
)
= mw +mad as desired.

The above corollary directly gives rise to the following result.
Corollary 3. Let σ = tanh. Given distinct weights w1, ...,wm ∈ Rd\{0} satisfying wk 6= ±wj for k 6= j , and
a1, ..., am ∈ R\{0}, we have

dim(span{σ(wT
ix), aiσ

′(wT
ix)x1, ..., aiσ

′(wT
ix)xd}mi=1) = m(d+ 1).

Next we consider the estimate of the model rank for convolutional neural networks (CNNs) which are widely used in
practice. Here we consider the case where the input has two-dimensional indices, which is the most general case for the
image input. The following two propositions can be directly generalized to the model rank estimate of CNNs with an
input of one index dimension in the main text.
Proposition 3 (model rank estimate for CNNs (with weight sharing)). Given m ∈ N, d ∈ N and s ∈ [d]. For any
l ∈ [m], letKl be a (s× s) matrix. Consider CNNs with stride = 1. For a tanh-CNN fθ with weight sharing,

fθ(I) =

m∑
l=1

d+1−s∑
i,j=1

alij tanh

∑
α,β

Ii+s−α,j+s−βKl;α,β

 , I ∈ Rd×d,
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forKl 6= 0, 1 ≤ l ≤ m, its model rank at θ = (alij ,Kl)l,i,j ismas
2+mK(d+1−s)2, wheremK = 1

2 |{Kl,−Kl|l ∈
[m]}| indicating the number of independent kernels, ma = 1

2

∑
K∈K dim(span{al,:,:}l∈h(K)) indicating the number

of independent effective neurons. Here K = {Kl,−Kl|l ∈ [m]}, h is a function over K s.t. for eachK ∈ K, h(K) =
{l|l ∈ [m],Kl = ±K}. | · | is the cardinality of a set, i.e., number of different elements in a set, and al,:,: denotes the
(d+ 1− s)× (d+ 1− s) matrix whose entries are alij’s.
Remark. In presence of zero-kernels at a parameter point θ, i.e.,Kl = 0 for certain l’s, the model rank is obviously
no less than that at a parameter point θ′ obtained by replacing alij by 0 for these l’s and all i, j’s in θ. Because
we always have f(·;θ) = f(·;θ′) and the model rank at θ′ is always the same as that in a narrower NN with all
zero-kernels removed, establishing the rank estimate for parameter points with nonzero-kernels is sufficient for the rank
estimate over the mode function space.

Proof. We first consider the case in which Kl ±Kl′ 6= 0 for any distinct l, l′ ∈ [m]. Let σ = tanh. In this case the
model rank is the dimension of the following function space (with respect to variable I ∈ Rd×d)

span
{
∂fθ
∂alij

,
∂fθ

∂Kl;α,β

}

= span

σ
∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 ,

d+1−s∑
i′,j′=1

ali′j′σ
′

∑
α′,β′

Ii′+s−α′,j′+s−β′Kl;α′,β′

 Ii′+s−α,j′+s−β


l,i,j,α,β

,

where l ∈ [m] and α, β ∈ [s]. Next, we prove by contradiction that the set of functions
d+1−s∑
i,j=1

alijσ
′

∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 Ii+s−α,j+s−β


l∈[m],α,β∈[s]

are linearly independent. If they are not linearly independent, there exist not all zero constants ζl11, ..., ζlss for l ∈ [m],
such that

m∑
l=1

s∑
α,β=1

ζlαβ

d+1−s∑
i,j=1

alijσ
′

∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 Ii+s−α,j+s−β = 0,

which implies that the set of functionsalijσ′
∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 Ii+s−α,j+s−β


l,i,j,α,β

are linearly dependent, contradicting Proposition 2. Moroever, if alij = 0 for any l ∈ [m] and all i, j ∈ {1, ..., d+1−s},

d+1−s∑
i,j=1

alijσ
′

∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 Ii+s−α,j+s−β = 0

for all α, β ∈ [s]. Notice that two kernels with Kl = ±Kl′ can be reduced to one while maintaining model rank if
and only if the corresponding output weights al,:,: and al′,:,: are linearly dependent. Then, similar to Corollary 2, we
conclude that the model rank is mas

2 +mK(d+ 1− s)2.

Proposition 4 (model rank estimate for CNNs without weight sharing). Given m ∈ N, d ∈ N and s ∈ [d]. For any
l ∈ [m] and i, j ∈ [d + 1 − s], let Klij be a (s × s) matrices. Consider CNNs with stride = 1. For a tanh CNN fθ
without weight sharing,

fθ(I) =

m∑
l=1

d+1−s∑
i,j=1

alij tanh

∑
α,β

Ii+s−α,j+s−βKlij;α,β

 , I ∈ Rd×d,

for Klij 6= 0, l ∈ [m], i, j ∈ [d + 1 − s], its model rank at θ = (alij ,Klij)l,i,j is mas
2 + mK , where

mK = 1
2 |{p(Klij),−p(Klij)|l ∈ [m], i, j ∈ [d + 1 − s]}| indicating the number of independent kernels,
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ma = 1
2 |{p(Klij),−p(Klij)|l ∈ [m], i, j ∈ [d + 1 − s], alij 6= 0}| indicating the number of independent effec-

tive neurons. Here p is the padding function over kernels, i.e., for each (s × s) kernel Klij , p(Klij) ∈ Rd×d s.t.
p(Klij)[i : i+ s− 1, j : j + s− 1] =Klij and the other elements of p(Klij) are zero. | · | is the cardinality of a set,
i.e., number of different elements in a set.
Remark. Similar to CNNs (with weight sharing), for CNNs without weight sharing, establishing the rank estimate for
parameter points with nonzero-kernels is sufficient for the rank estimate over the mode function space.

Proof. Let σ = tanh. The model rank is the dimension of the following function space

span
{
∂fθ
∂alij

,
∂fθ

∂Klij;α,β

}
l,i,j,α,β

= span

σ
∑
α′,β′

Ii+s−α′,j+s−β′Klij;α′,β′

 ,

alijσ
′

∑
α′,β′

Ii+s−α′,j+s−β′Klij;α′,β′

 Ii+s−α,j+s−β


l,i,j,α,β

,

where l ∈ [m], 1 6 i, j 6 d + 1 − s, and α, β ∈ [s]. Also note that if alij = 0 for some l ∈ [m] and i, j ∈
{1, ..., d+ 1− s}, then

alijσ
′

∑
α′,β′

Ii+s−α′,j+s−β′Klij;α′,β′

 Ii+s−α,j+s−β = 0

for all α, β ∈ [s]. It follows from Proposition 2 that this space has dimension mas
2 +mK .

Remark. In particular, for a target function f∗ ∈ FCNN
m \FCNN

m−1 , the model rank of a equivalent CNNs model without
weight sharing is mas

2 +mK = m(s2 + 1)(d + 1 − s)2 − s2mnull, where mnull = |{alij |alij = 0}| is a variable
counting the number of ineffective neurons in the target function.

A.2.3 Two-layer fully-connected neural networks

Two-layer tanh-NN: fθ(x) =
∑m
i=1 aiσ(w

T
i x),x ∈ Rd,θ = (ai,wi)

m
i=1, σ = tanh .

Step 1: Stratify the parameter space into different model rank levels to obtain the rank hierarchy over the parameter
space.

Given any parameter point θ = (ai,wi)
m
i=1. Consider the tangent space

span
{
σ(wT

i x), aiσ
′(wT

i x)x1, · · · , aiσ′(wT
i x)xd

}m
i=1

.

By Corollary 2, the dimension of tangent space ismad+mw, wheremw = 1
2 |{wj ,−wj |j ∈ [m],wj 6= 0}| indicating

the number of independent neurons,ma = 1
2 |{wj ,−wj |j ∈ [m],wj 6= 0, aj 6= 0}|+|{wj |j ∈ [m],wj = 0, aj 6= 0}|

indicating the number of independent effective neurons. Here, | · | is the cardinality of a set, i.e., number of different
elements in a set.

Step 2: Stratify the model function space into different model rank levels to obtain the rank hierarchy over the model
function space.

Given any target function f∗ that can be recovered by a two-layer NN with width m. Without loss of generality,
let f∗ = fθ∗ :=

∑k
i=1 a

∗
i σ(w

∗T
i x), a

∗
i 6= 0,w∗i 6= 0,w∗i 6= ±w∗j , 1 ≤ k ≤ m,θ∗ = (a∗i ,w

∗
i )
k
i=1. By Proposi-

tion 2, the set {σ(wT
i x), aiσ

′(wT
i x)x1, · · · , aiσ′(wT

i x)xd}ki=1 is linearly independent and rankfθ (θ
∗) = k(d + 1).

By definition, the model rank of f∗ is the minimal model rank among all parameters recovering f∗. Suppose
there exists a NN fθ =

∑q
i=1 aiσ(w

T
i x), ai 6= 0,wi 6= 0,wi 6= ±wj for i 6= j that can recover f∗, and

{σ(wT
i x), aiσ

′(wT
i x)x1, · · · , aiσ′(wT

i x)xd}
q
i=1 = q(d+ 1) < k(d+ 1), then we have q < k. Since {σ(wT

i x)}ki=1

is linearly independent and dim(span{σ(wT
i x)}

q
i=1) ≤ q < k, this contradicts fθ being able to recover f∗. Therefore,

rankfθ (θ) ≥ k(d+ 1) and rankfθ (θ) attains its lower bound k(d+ 1) at θ∗. Thus rankfθ (f
∗) = k(d+ 1). Then, the

two-layer NN model possesses the rank levels {k(d+ 1)|k ∈ [m]} over its function space, each of which is occupied
by {f : Rd → R|f = fθ :=

∑k
i=1 aiσ(w

T
i x), ai 6= 0,wi 6= 0,wi 6= ±wj} as illustrated in Table 3 in the main text.

Remark that the above analysis serves as a proof of the following proposition.
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Proposition 5 (rank hierarchy of two-layer tanh-NN). Given a two-layer NN

fθ(x) =

m∑
i=1

ai tanh(w
T
ix),x ∈ Rd,θ = (ai,wi)

m
i=1,

for any target function f∗ that can be recovered by a two-layer NN with width m, say f∗ = fθ∗ :=∑k
i=1 a

∗
i σ(w

∗T
i x), a

∗
i 6= 0,w∗i 6= 0,w∗i 6= ±w∗j , 1 ≤ k ≤ m,θ∗ = (a∗i ,w

∗
i )
k
i=1 , we have model rank

rankfθ (f
∗) = k(d+ 1).

A.2.4 Two-layer convolutional neural networks

Two-layer tanh-CNN with weight sharing. Consider the 2-layer width-m tanh convolution neural networks without
weight sharing. Given m ∈ N, d ∈ N and s ∈ [d]. For any l ∈ [m] and i, j ∈ {1, ..., d+ 1− s}, let Kl be a (s× s)
convolutional kernel. For a 2-d input I , consider tanh-CNNs with stride = 1:

fθ(I) =

m∑
l=1

d+1−s∑
i,j=1

alijσ

∑
α,β

Ii+s−α,j+s−βKl;α,β

 , I ∈ Rd×d, σ = tanh

Step 1: Stratify the parameter space into different model rank levels to obtain the rank hierarchy over the parameter
space.

Given any parameter point θ = (alij ,Kl)l,i,j(Kl 6= 0). Consider the tangent space

span

σ
∑
α′,β′

Ii+s−α′,j+s−β′Kl;α′,β′

 ,

d+1∑
i′,j′=s+1

ai′j′lσ
′

∑
α′,β′

Ii′+s−α′,j′+s−β′Kl;α′,β′

 Ii′+s−α,j′+s−β


l,i,j,α,β

.

By Proposition 3, the dimension of tangent space is mas
2 +mK(d+ 1− s)2, where mK = 1

2 |{Kl,−Kl|l ∈ [m]}|
indicating the number of independent kernels, ma = 1

2

∑
K∈K dim(span{al,:,:}l∈h(K)) indicating the number of

independent effective neurons. Here K = {Kl,−Kl|l ∈ [m]} and h is a function overK s.t. for eachK ∈ K, h(K) =
{l|l ∈ [m],Kl = ±K}. | · | is the cardinality of a set, i.e., number of different elements in a set.

Step 2: Stratify the model function space into different model rank levels to obtain the rank hierarchy over the model
function space.

Given any target function f∗ that can be recovered by a two-layer NN with width m. Without loss of generality, let
f∗ = fθ∗ :=

∑k
l=1

∑d+1−s
i,j=1 a∗lijσ

(∑
α,β Ii+s−α,j+s−βK

∗
l;α,β

)
, K∗l 6= 0,K∗l 6= ±K∗l′ for any l 6= l′,∀l,∃a∗lij 6=

0, 1 ≤ k ≤ m,θ∗ = (a∗lij ,K
∗
l )l,i,j . By Proposition 2, rankfθ (θ

∗) = k(s2 + (d + 1 − s)2). By definition, the
model rank of f∗ is the minimal model rank among all parameters recovering f∗. Suppose there exists a NN
fθ =

∑q
l=1

∑d+1−s
i,j=1 a∗lijσ

(∑
α,β Ii+s−α,j+s−βK

∗
l;α,β

)
,K∗l 6= 0,K∗l 6= ±K∗l′ for any l 6= l′,∀l,∃a∗lij 6= 0 that can

recover f∗ and the dimension of tangent space q(s2+(d+1− s)2) < k(s2+(d+1− s)2), then we have q < k. Since
{σ
(∑

α,β Ii+s−α,j+s−βK
∗
l;α,β

)
}kl=1 is linearly independent and dim(span{σ

(∑
α,β Ii+s−α,j+s−βK

∗
l;α,β

)
}ql=1) ≤

q < k, this contradicts fθ being able to recover f∗. Therefore, rankfθ (θ) ≥ k(s2+(d+1− s)2) and rankfθ (θ) attains
its lower bound k(s2 + (d + 1 − s)2) at θ∗. Thus rankfθ (f

∗) = k(s2 + (d + 1 − s)2). Then, the two-layer CNN
model possesses the rank levels {k(s2 + (d+ 1− s)2)|k ∈ [m]} over its function space, each of which is occupied by
{f : Rd → R|f = fθ :=

∑k
l=1

∑d+1−s
i,j=1 alijσ

(∑
α,β Ii+s−α,j+s−βKl;α,β

)
} as illustrated in Table 7.

A.2.5 Details of architecture comparison

On the basis of the above rank hierarchy for two-layer CNNs with weight sharing, we further exhibit in Table. 8 the
model rank in other architectures such as CNNs without weight sharing and fully-connected NNs illustrated in Fig. 8.
Remark that the total size of hidden neurons m(d+ 1− s)2 is fixed over different architectures. The model of CNN
without weight sharing is introduced below.
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Table 7: The rank hierarchy of two-layer width-m tanh-CNN (with weight sharing).

model: fθ(I) =
∑m
l=1

∑d+1−s
i,j=1 alijσ

(∑
α,β Ii+s−α,j+s−βKl;α,β

)
, I ∈ Rd×d,θ = (alij ,Kl)l,i,j

rankfθ (f
∗) f∗

0 0

s2 + (d+ 1− s)2 FCNN
1 \{0} : {

∑d+1−s
i,j=1 a∗ijσ

(∑
α,β Ii+s−α,j+s−βK

∗
1;α,β

)
|

K∗1 6= 0,∃i, j, a∗ij 6= 0}
...

...

k(s2 + (d+ 1− s)2) FCNN
k \FCNNk−1 : {

∑k
l=1

∑d+1−s
i,j=1 a∗lijσ

(∑
α,β Ii+s−α,j+s−βK

∗
l;α,β

)
|

K∗l 6= 0,K∗l 6= ±K∗l′ for any l 6= l′,∀l,∃a∗lij 6= 0}
...

...

m(s2 + (d+ 1− s)2) FCNN
m \FCNNm−1 : {

∑m
l=1

∑d+1−s
i,j=1 a∗lijσ

(∑
α,β Ii+s−α,j+s−βK

∗
l;α,β

)
|

K∗l 6= 0,K∗l 6= ±K∗l′ for any l 6= l′,∀l,∃a∗lij 6= 0}

Two-layer tanh-CNN without weight sharing. Consider the 2-layer width-m tanh convolution neural networks
without weight sharing. Given m ∈ N, d ∈ N and s ∈ [d]. For any l ∈ [m] and i, j ∈ {1, ..., d+ 1− s}, letKlij be a
(s× s) convolutional kernel. For a 2-d input I , consider tanh-CNNs with stride = 1:

fθ(I) =

m∑
l=1

d+1−s∑
i,j=1

alijσ

∑
α,β

Ii+s−α,j+s−βKlij;α,β

 , I ∈ Rd×d, σ = tanh

Fully-connected Local connectivity：
without weight sharing

Weight sharing

Figure 8: Illustration of architectures from fully-connected NN to CNN for comparison.

By Table. 8, for a common data of d = 28, suppose the target function can be recovered by a CNN model with
width m, then the model rank for different NN architectures varies a lot from 685m (CNN with weight sharing) to
6760m (CNN without weight sharing) to 530660m (fully-connected NN), indicating a huge difference in their target
recovery/generalization performance with limit training data.
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Table 8: The rank hierarchy for two-layer tanh-CNN with m-kernels of size s× s and stride 1. The input x ∈ Rd×d.
For functions in each function set over the rank hierarchy, we also present their model rank in the corresponding CNN
without weight sharing and the corresponding DNN. Here mnull = |{alij |alij = 0}| counts the number of zero output
weights in the target function.

f∗ CNN CNN without weight sharing Fully-connected NN

0 0 0 0

FCNN
1 \{0} s2 + (d+ 1− s)2 (s2 + 1)(d+ 1− s)2 − s2mnull (d2 + 1)(d+ 1− s)2 − d2mnull

...
...

...
...

FCNN
k \FCNN

k−1 k(s2 + (d+ 1− s)2) k(s2 + 1)(d+ 1− s)2 − s2mnull k(d2 + 1)(d+ 1− s)2 − d2mnull

...
...

...
...

FCNN
m \FCNN

m−1 m(s2 + (d+ 1− s)2) m(s2 + 1)(d+ 1− s)2 − s2mnull m(d2 + 1)(d+ 1− s)2 − d2mnull

B Details of linear stability theory

Definition 5 (linear stability for recovery). Given any differentiable model fθ with model function space Ffθ , loss
function `(·, ·), and training data S = {(xi, yi)}ni=1,
(i) a parameter point θ∗ ∈ RM is linearly stable if f(·;θ∗) is the unique solution to

minf∈P̃θ∗
1

n

n∑
i=1

`(f(xi), yi), (11)

where the tangent function hyperplane P̃θ∗ := f(·;θ∗) + Pθ∗ = {f(·;θ∗) + aT∇θf(·;θ∗)|a ∈ RM};
(ii) a function f∗ ∈ Ffθ is linearly stable if there exists a linearly stable parameter point θ′ such that f(·;θ′) = f∗.

Definition 6 (empirical tangent matrix and empirical model rank). Given any differentiable model fθ and training data
S = {(xi, yi)}ni=1, at any parameter point θ∗,∇θf(X;θ∗) = [∇θf(x1;θ

∗), · · · ,∇θf(xn;θ∗)] is referred to as the
empirical tangent matrix. Then the empirical model rank is defined as follows

rankS(θ∗) = rank(∇θf(X;θ∗)).

Assumption 1. The loss function ` : R×R→ [0,∞) is a continuously differentiable function satisfying `(x, y) = 0 if
and only if x = y.

Lemma 4 (linear stability condition for recovery). Given any differentiable model fθ and training data S =
{(xi, yi)}ni=1, a global minimizer θ∗ ∈ RM satisfying f(xi;θ

∗) = yi for all i ∈ [n] is linearly stable if and
only if rankS(θ∗) = rankfθ (θ

∗).

Proof. Let

R̃S(a) =
1

n

n∑
i=1

`(f(xi,θ
∗) + aT∇θf(xi;θ∗), yi).

Because `(f(xi,θ∗), yi) = 0 for all i ∈ [n], it follows that a is a global minimum of R̃S if and only if a ∈
ker(∇θf(X;θ∗)T) = {∇θf(X;θ∗)Ta = 0|a ∈ RM}. Now if θ∗ is linearly stable, because f(·,θ∗) is the unique
solution, for any a ∈ RM such that R̃S(a) = 0, we must have a ∈ ker(∇θf(·;θ∗)T) = {∇θf(·;θ∗)Ta = 0|a ∈ RM},
thus ker(∇θf(X;θ∗)T) ⊆ ker(∇θf(·;θ∗)T). But since ker(∇θf(·;θ∗)T) ⊆ ker(∇θf(X;θ∗)T) based on the fact
that zero function attains 0 at any data point, we have ker(∇θf(·;θ∗)T) = ker(∇θf(X;θ∗)T). Because rankS(θ∗) +
dim(ker(∇θf(X;θ∗)T)) = rankfθ (θ

∗) + dim(ker(∇θf(·;θ∗)T)) ≡M , we obtain rankS(θ∗) = rankfθ (θ
∗).

Conversely, if rankS(θ∗) = rankfθ (θ
∗), then ker(∇θf(·;θ∗)T) = ker(∇θf(X;θ∗)T). Thus, for any a ∈ RM with

R̃S(a) = 0, we have θ ∈ ker(∇θf(X;θ∗)T) = ker(∇θf(·;θ∗)T). Therefore, f(·,θ∗) is the unique solution in its
tangent function hyperplane, i.e., θ∗ is linearly stable.
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Lemma 5. Given m linearly independent analytic functions φ1(x), · · · , φm(x) with φi : Rd → R for all i ∈ [m],
rank(Φ(X)) = m a.e. with respect to Ld×m Lebesgue measure, where

Φ(X) :=

φ1(x1) ... φm(x1)
...

. . .
...

φ1(xm) ... φm(xm)

 .
Proof. Clearly, det(Φ(·)) : Rd×m → R is an analytic function over Rd×m. In addition, because {φi}mi=1 are linearly
independent, there existsX ∈ Rd×m such that det(Φ(·)) 6= 0, i.e., det(Φ(·)) is a non-zero analytic function. Therefore,
rank(Φ(X)) = m a.e. with respect to Ld×m Lebesgue measure.

Corollary 4. Given m linearly independent analytic functions φ1(x), · · · , φm(x) with φi : Rd → R for all i ∈ [m]
and dim(span({φi(·)}mi=1)) = r, rank(Φ(X)) = min{n, r} a.e. with respect to Ld×m Lebesgue measure.

Proof. It is obvious that rank(Φ(X)) 6 min{n, r}. For n 6 r, we can always pick n independent functions from
{φi(·)}mi=1. By Lemma 5, Φ(X) has a rank-n submatrix of Φ(X) a.e. with respect to Lebesgue measure. For n > r, we
have that the submatrix of the first r rows of Φ(X) has rank r a.e. by Lemma 5. Therefore, rank(Φ(X)) = min{n, r}
a.e. with respect to Ld×m Lebesgue measure.

Theorem 4 (phase transition of linear stability for recovery). Given any analytic model fθ, for any target function
f∗ ∈ Ffθ and n generic training data S = {(xi, f∗(xi))}ni=1,
(i) Strictly under-determined regime: if n < rankfθ (f

∗), then f∗ is not linearly stable;
(ii) Quasi-determined regime: if n > rankfθ (f

∗), then f∗ is linearly stable almost everywhere with respect to S.

Proof. (i) For any θ∗ ∈ Mf∗ , we have rankS(θ∗) 6 n < rankfθ (f
∗) 6 rankfθ (θ

∗). Therefore the linear stability
condition cannot be satisfied, i.e., f∗ is not linearly stable.

(ii) Given any θ∗ ∈ Mf∗ with rank(θ∗) = rankfθ (f
∗), by Corollary 4, rank(∇θf(X;θ∗)T) = min{n, rankfθ (θ

∗)}
almost everywhere. Because n > rankfθ (f

∗), we have rankS(θ∗) = rankfθ (θ
∗) almost everywhere. By the linear

stability condition Lemma 1, f∗ is linearly stable almost everywhere.

Corollary 5 (implicit bias of linear stability hypothesis). Given any model fθ and training dataset S = {(xi, yi)}ni=1,
if an interpolation f ′ ∈ Ffθ is linearly stable, then rankfθ (f

′) 6 n.

Proof. By the linear stability condition Lemma 1, there exists θ′ ∈Mf ′ such that rankS(θ′) = rankfθ (θ
′). Because

rankS(θ′) 6 n, we have rankfθ (θ
′) 6 n. Then rankfθ (f

′) 6 rankfθ (θ
′) 6 n.

C Details of experiments

For Fig. 2, the target matrices we use are as follows:

M∗
1 =

 1 0.3 0.7 −0.4
2 0.6 1.4 −0.8
4 1.2 2.8 −1.6
7 2.1 4.9 −2.8

 , M∗
2 =

 4 0.6 1.8 0.8
6 0.9 2.7 1.2
8 1.2 3.6 1.6
18 2.7 8.1 3.6

 ,

M∗
3 =

 −1.8 2.4 7.7 −5.3
0.4 1.8 5.4 −3.6
3.2 1.8 4.8 −3.
6.6 2.4 5.9 −3.5

 , M∗
4 =

 7.6 3.3 19.8 −7.3
7.6 2.1 10.7 −2.4
8.8 1.8 7.6 −0.2
19.2 3.6 14.1 0.9

 ,

M∗
5 =

 −1.8 2.4 7.7 −5.3
0.4 1.8 5.4 −3.6
3.2 1.8 4.8 −3
6.6 2.4 5.9 −3.5

 , M∗
6 =

 8.5 9.3 22.5 −6.1
8.2 6.1 12.5 −1.6
11.5 19.8 15.7 3.4
20.4 11.6 17.7 2.5

 ,

M∗
7 =

 3.6 −1.2 8.1 −3.5
8.1 −3.5 3.6 −1.2
9.1 −1.7 11.4 −0.6
11.4 −0.6 9.1 −1.7

 , M∗
8 =

 12.1 17.3 24.1 −4.9
16.3 24.1 16.1 1.1
14.2 25.8 16.9 4.3
22.2 15.6 18.5 3.1

 .
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For Fig. 3, the target matrix we use isM∗
1 as defined above.

For Fig. 4, the target matrix we use isM∗
2 as defined above. The sampling sequences we use are listed as follows for

each row in Fig. 4, respectively:

{(3, 1), (4, 3), (2, 1), (1, 3), (2, 4), (4, 1), (1, 1), (1, 2), (4, 2), (4, 4), (3, 2), (3, 4), (3, 3), (2, 2), (2, 3), (1, 4)},

{(3, 4), (2, 1), (2, 3), (4, 3), (4, 1), (4, 4), (1, 1), (3, 3), (1, 2), (1, 4), (1, 3), (2, 4), (3, 2), (2, 2), (3, 1), (4, 2)},
{(2, 4), (3, 3), (3, 1), (4, 4), (4, 3), (3, 4), (1, 3), (1, 4), (2, 3), (3, 3), (1, 1), (1, 2), (4, 2), (2, 2), (2, 1), (4, 1)},
{(4, 4), (2, 3), (4, 2), (1, 2), (1, 4), (3, 2), (4, 1), (3, 1), (1, 1), (3, 4), (1, 3), (2, 2), (2, 4), (2, 1), (3, 3), (4, 3)},
{(2, 4), (3, 4), (4, 1), (1, 2), (2, 2), (4, 4), (1, 1), (3, 1), (3, 2), (4, 2), (2, 1), (1, 3), (4, 3), (3, 3), (2, 3), (1, 4)},
{(4, 3), (4, 4), (2, 1), (3, 4), (3, 3), (3, 1), (2, 3), (1, 1), (4, 1), (2, 4), (1, 4), (1, 3), (1, 2), (2, 2), (3, 2), (4, 2)}.

For Fig. 5, the target matrix we use is M∗
2 as defined above. For three sets of experiments with 7, 12, 15 training

samples, we sample the following sets of indices of the target matrix, respectively:

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3), (4, 4)},

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 3), (4, 4)},
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}.

For Fig. 6, we consider the following target function:

fθ(x) =W
[2]σ(W [1]x),

whereW [1] =

[
0.6 0.8 1 0 0
0 0.6 0.8 1 0
0 0 0.6 0.8 1

]
,W [2] = [1, 1, 1].

For the training dataset and the test dataset, we construct the input data through the standard normal distribution and
obtain the output values from the target function. The size of the training dataset varies whereas the size of the test
dataset is fixed to 1000. The learning rate for the experiments in each setup is fine-tuned from 0.05 to 0.5 for a better
generalization performance.
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